• Title/Summary/Keyword: transparent materials

검색결과 1,080건 처리시간 0.026초

차세대 투명전극 소재의 종류와 특성 (Materials and Characteristics of Emerging Transparent Electrodes)

  • 정문현;김세열;유도혁;김중현
    • 공업화학
    • /
    • 제25권3호
    • /
    • pp.242-248
    • /
    • 2014
  • 정보 통신 분야의 발전에 따라 기존의 전자 기기들은 평면성을 벗어나 투명 유연하고 깨지지 않는 특성이 요구되고 있다. 이러한 부가적인 특성을 갖춘 기기들의 제조를 위해서는 전극의 투명성과 유연성을 동시에 갖고 있어야 하지만, 현재 가장 대표적으로 이용되는 투명전극인 ITO (Indium Tin Oxide)는 유연하지 못하다는 단점과 자원적인 한계를 갖고 있다. 이에 따라 ITO의 한계를 극복하기 위해 다양한 물질들을 이용한 대체 재료 개발이 활발히 연구되고 있으며 대체 물질들의 복합화를 통해 더 향상된 물성을 발현시키기 위한 연구가 진행되고 있다. 본 총설에서는 ITO의 한계를 극복하고 투명전극으로서의 응용 가능한 대체 물질들에 대한 연구 현황을 정리하였다.

Functional Designs of Metal oxide for Transparent Electronics

  • Kim, Joondong;Patel, Malkeshkumar;Kim, Hong-Sik;Kim, Hyunki;Yadav, Pankaj;Park, Wanghee;Ban, Dongkyun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.387.1-387.1
    • /
    • 2016
  • Transparent materials are necessary for most photoelectric devices, which allow the light generation from electric energy or vice versa. Metal oxides are usual materials for transparent conductors to have high optical transmittance with good electrical properties. Functional designs may apply in various applications, including solar cells, photodetectors, and transparent heaters. Nanoscale structures are effective to drive the incident light into light-absorbing semiconductor layer to improve solar cell performances. Recently, the new metal oxide materials have inaugurated functional device applications. Nickel oxide (NiO) is the strong p-type metal oxide and has been applied for all transparent metal oxide photodetector by combining with n-type ZnO. The abrupt p-NiO/n-ZnO heterojunction device has a high transmittance of 90% for visible light but absorbs almost entire UV wavelength light to show the record fastest photoresponse time of 24 ms. For other applications, NiO has been applied for solar cells and transparent heaters to induce the enhanced performances due to its optical and electrical benefits. We discuss the high possibility of metal oxides for current and future transparent electronic applications.

  • PDF

은나노선/Ni 산화물 고내열성 하이브리드 투명전극의 형성 (Fabrications of Silver Nanowire/NiO Based High Thermal-Resistance Hybrid Transparent Electrode)

  • 정성훈;이승훈;김도근
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.486-491
    • /
    • 2017
  • Silver nanowire (AgNW) transparent electrode is one of next generations of flexible and transparent electrode. The electrode shows high conductivity and high transparency comparable to ITO. However, the electrode is weak against heat. The wires are separated into nanodots at temperature above $200^{\circ}C$. It causes the electrical resistance increase. Moreover, it is vulnerable to oxygen and moisture in the atmosphere. The improvement of thermal and moisture resistance of silver nanowire transparent electrode is the most important for commercializing. We proposed silver nanowires transparent electrode which is capped with very thin nickel oxide layer. The nickel oxide layer is five nanometers of thickness, but the heat and moisture resistance of the transparent electrode is effectively improved. The AgNW/NiO electrode can endure at $300^{\circ}C$ of temperature for 30 minutes, and resistance is not increased for 180 hours at $85^{\circ}C$ of temperature and 85% of relative humidity. We showed an applications of transparent and flexible heater using the electrode, the heater is operated more than $180^{\circ}C$ of temperature.

Fabrication of Stretchable Transparent Electrodes

  • Oh, Jong Sik;Yeom, Geun Young
    • Applied Science and Convergence Technology
    • /
    • 제26권6호
    • /
    • pp.149-156
    • /
    • 2017
  • Recently, stretchable and transparent electrodes have received great attention owing to their potential for realizing wearable electronics. Unlike the traditional transparent electrodes represented by indium tin oxide (ITO), stretchable and transparent electrodes are able to maintain their electrical and mechanical properties even under stretching stress. Lots of research efforts have been dedicated to the development of stretchable and transparent electrodes since they represent the most important engineering platform for the production of wearable electronics. Various approaches using silver nanowires, nanostructured networks, conductive polymers, and carbon-based electrodes have been explored by many world leading research groups. In this review, present and recent advances in the fabrication methods of stretchable and transparent electrodes are discussed.

은 나노섬유의 직경제어 합성 및 투명전극 응용 연구 (Study on the Diameter-Controlled Synthesis of Silver Nanofibers and Their Application to Transparent Conductive Electrodes)

  • 이영인
    • 한국재료학회지
    • /
    • 제25권10호
    • /
    • pp.537-542
    • /
    • 2015
  • One-dimensional (1D) silver nanostructures, which possess the highest conductivity among all room-temperature materials, moderate flexibility and high transmittance, are one of the most promising candidate materials to replace conventional indium tin oxide transparent electrodes. However, the short length and large diameter of 1D silver nanostructures cause a substantial decrease in the optical transparency or an increase in the sheet resistance. In this work, ultra-long silver nanofiber networks were synthesized with a low-cost and scalable electrospinning process, and the diameter of the nanofibers were finetuned to achieve a higher aspect ratio. The decrease in the diameter of the nanofibers resulted in a higher optical transparency at a lower sheet resistance: 87 % at $300{\Omega}/sq$, respectively. It is expected that an electrospun silver nanofiber based transparent electrode can be used as a key component in various optoelectronic applications.

구리 전기도금 방법을 이용한 은 나노와이어 투명전극의 전기전도도 향상 (Enhancement of Electrical Conductivity in Silver Nanowire Network for Transparent Conducting Electrode using Copper Electrodeposition)

  • 지한나;장지성;이상엽;정중희
    • 한국재료학회지
    • /
    • 제29권5호
    • /
    • pp.311-316
    • /
    • 2019
  • Transparent conducting electrodes are essential components in various optoelectrical devices. Although indium tin oxide thin films have been widely used for transparent conducting electrodes, silver nanowire network is a promising alternative to indium tin oxide thin films owing to its lower processing cost and greater suitability for flexible device application. In order to widen the application of silver nanowire network, the electrical conductance has to be improved while maintaining high optical transparency. In this study, we report the enhancement of the electrical conductance of silver nanowire network transparent electrodes by copper electrodeposition on the silver nanowire networks. The electrodeposited copper lowered the sheet resistance of the silver nanowire networks from $21.9{\Omega}{\square}$ to $12.6{\Omega}{\square}$. We perform detailed X-ray diffraction analysis revealing the effect of the amount of electrodeposited copper-shell on the sheet resistance of the core-shell(silver/copper) nanowire network transparent electrodes. From the relationship between the cross-sectional area of the copper-shell and the sheet resistance of the transparent electrodes, we deduce the electrical resistivity of electrodeposited copper to be approximately 4.5 times that of copper bulk.

Effect of Frit Content in Ag Paste on the Discoloration of Transparent Dielectric in PDP

  • Jeon, Jae-Sam;Kim, Hyung-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1248-1251
    • /
    • 2005
  • In PDP, a transparent dielectric is formed on a front glass substrate so as to cover bus electrodes (Ag). During the fabrication process, sometimes, a transparent dielectric reacts with bus (Ag) electrode in the range of $560-600^{\circ}C$, and the reaction gives the dielectric its yellow coloration, what is called "yellowing phenomena". In this paper, we investigated the reaction between bus electrode and transparent dielectric covered with different frit content in Ag paste.

  • PDF

이온빔 처리를 통한 은나노와이어 전극의 전기적 특성과 안정성 향상 (Improvement of Electrical Property and Stability of Silver Nanowire Transparent Electrode Via Ion-beam Treatment)

  • 정성훈;이승훈;김도근
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.455-459
    • /
    • 2017
  • The development of flexible transparent electrode has been paid attention for flexible electronics. In this study, we have developed transparent electrode based on silver nanowires with improved electrical property and stability through ion-beam treatment. The energetic particles of ion-beam could sinter junctions of each silver nanowires and etch out polyvinylpyrollidone(PVP) coated on silver nanowires. The sheet resistance of silver nanowire transparent electrode was reduced by 74%, and the resistance uniformity was increased about 3 times after exposure of ion beam. Moreover, the stability at $85^{\circ}C$ of temperature and 85% of relative humidity could be also improved.

Improvement of Electrical Conductivity of Transparent Conductive Single-Walled Carbon Nanotube Films Fabricated by Surfactant Dispersion

  • Lee, Seung-Ho;Kim, Myoung-Su;Goak, Jeung-Choon;Lee, Nae-Sung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.17-17
    • /
    • 2009
  • Single-walled carbon nanotubes (SWCNTs) have attracted much attention as promising materials for transparent conducting films (TCFs), thanks to their superior electrical conductivity, high mechanical strength, and complete flexibility. The CNT-based TCFs can be used in a variety of application fields as flexible, transparent electrodes, including touch panel screens, flexible electronics, transparent heaters, etc. First of all, this study investigated the effect of a variety of surfactants on the dispersion of SWCNTs in an aqueous solution. Following the optimization of the dispersion by surfactants, flexible TCFs were fabricated by spraying the CNT suspension onto poly(ethylene terephthalate) (PET) substrates. The sheet resistances of the TCFs having different surfactants were investigated with treatment in nitric acid ($HNO_3$) whose concentration and period of treatment time were varied. It seems that the $HNO_3$ removes the surfactants from and is simultaneously doped into the SWCNT network, reducing the contact resistance between CNTs. TCFs were characterized by UV-VIS spectroscopy, thermogravimetric analyzer (TGA), scanning electron microscopy (SEM), and four-point probe.

  • PDF

Improvement of Electrical Conductivity of Transparent Conductive Single-Walled Carbon Nanotube Films Fabricated by Surfactant Dispersion

  • Lee, Seung-Ho;Kim, Myoung-Su;Goak, Jeung-Choon;Lee, Nae-Sung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.254-254
    • /
    • 2009
  • Single-walled carbon nanotubes (SWCNTs) have attracted much attention as promising materials for transparent conducting films (TCFs), thanks to their superior electrical conductivity, high mechanical strength, and complete flexibility. The CNT-based TCFs can be used in a variety of application fields as flexible, transparent electrodes, including touch panel screens, flexible electronics, transparent heaters, etc. First of all, this study investigated the effect of a variety of surfactants on the dispersion of SWCNTs in an aqueous solution. Following the optimization of the dispersion by surfactants, flexible TCFs were fabricated by spraying the CNT suspension onto poly(ethylene terephthalate) (PET) substrates. The sheet resistances of the TCFs having different surfactants were investigated with treatment in nitric acid ($HNO_3$) whose concentration and period of treatment time were varied. It seems that the $HNO_3$ removes the surfactants from and is simultaneously doped into the SWCNT network, reducing the contact resistance between CNTs. TCFs were characterized by UV-VIS spectroscopy, thermogravimetric analyzer (TGA), scanning electron microscopy (SEM), and four-point probe.

  • PDF