• 제목/요약/키워드: transparent conduction oxides

검색결과 5건 처리시간 0.026초

스핀코팅으로 제작된 Cu2O 필름의 광전기적 특성 (Optoelectronic Characteristics of Transparent Cu2O Films Spin-coated on Glass Substrates)

  • 곽기열;조경아;김상식
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.123-126
    • /
    • 2010
  • $Cu_2O$ nanoparticles-based films are fabricated by spin-coating on glass substrates and their optoelectronic characteristics are investigated in this study. The $Cu_2O$ films are nearly all-transparent as high as 98% in a wavelength range from 400 nm to 900 nm and three exciton peaks associated with the sublevels in the conduction band are observed at the wavelengths shorter than 400 nm in the absorption spectrum. Under the illumination of the 325 nm wavelength light, the photocurrent efficiency of the $Cu_2O$ film is $1.8\times10^5 {\mu}A/W$ at a voltage of 2.5 V in air.

Effect of the oxygen flow ratio on the structural and electrical properties of indium zinc tin oxide (IZTO) films prepared by pulsed DC magnetron sputtering

  • Son, Dong-Jin;Nam, Eun-Kyoung;Jung, Dong-Geun;Ko, Yoon-Duk;Choi, Byung-Hyun;Kim, Young-Sung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.168-168
    • /
    • 2010
  • Transparent conduction oxides (TCOs) films is extensively reported for optoelectronic devices application such as touch panels, solar cells, liquid crystal displays (LCDs), and organic light emitting diodes(OLEDs). Among the many TCO film, indium tin oxide(ITO) is in great demand due to the growth of flat panel display industry. However, indium is not only high cost but also its deposits dwindling. Therefore, many studies are being done on the transparent conductive oxides(TCOs). We fabricated a target of IZTO(In2O3:ZnO:SnO2=70:15:15 wt.%) reduced indium. Then, IZTO thin films were deposited on glass substrates by pulsed DC magnetron sputtering with various oxygen flow ratio. The substrate temperature was fixed at the room temperature. We investigated the electrical, optical, structural properties of IZTO thin films. The electrical properties of IZTO thin films were dependent on the oxygen partial pressure. As a result, the most excellent properties of IZTO thin films were obtained at the 3% of oxygen flow rate with the low resistivity of $7.236{\times}10^{-4}{\Omega}cm$. And also the optical properties of IZTO thin films were shown the good transmittance over 80%. These IZTO thin films were used to fabricated organic light emitting diodes(OLEDs) as anode and the device performances studied. The OLED with an IZTO anode deposited at optimized deposition condition showed good brightness properties. Therefore, IZTO has utility value of TCO electrode although it reduced indium and we expect it is possible for the IZTO to apply to flexible display due to the low processing temperature.

  • PDF

Transparent Nano-floating Gate Memory Using Self-Assembled Bismuth Nanocrystals in $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMN) Pyrochlore Thin Films

  • 정현준;송현아;양승동;이가원;윤순길
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.20.1-20.1
    • /
    • 2011
  • The nano-sized quantum structure has been an attractive candidate for investigations of the fundamental physical properties and potential applications of next-generation electronic devices. Metal nano-particles form deep quantum wells between control and tunnel oxides due to a difference in work functions. The charge storage capacity of nanoparticles has led to their use in the development of nano-floating gate memory (NFGM) devices. When compared with conventional floating gate memory devices, NFGM devices offer a number of advantages that have attracted a great deal of attention: a greater inherent scalability, better endurance, a faster write/erase speed, and more processes that are compatible with conventional silicon processes. To improve the performance of NFGM, metal nanocrystals such as Au, Ag, Ni Pt, and W have been proposed due to superior density, a strong coupling with the conduction channel, a wide range of work function selectivity, and a small energy perturbation. In the present study, bismuth metal nanocrystals were self-assembled within high-k $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMN) films grown at room temperature in Ar ambient via radio-frequency magnetron sputtering. The work function of the bismuth metal nanocrystals (4.34 eV) was important for nanocrystal-based nonvolatile memory (NVM) applications. If transparent NFGM devices can be integrated with transparent solar cells, non-volatile memory fields will open a new platform for flexible electron devices.

  • PDF

염료감응형 광전기화학 물분해 전지용 Tri-branched tri-anchoring organic dye 개발 (Tri-branched tri-anchoring organic dye for Visible light-responsive dye-sensitized photoelectrochemical water-splitting cells)

  • 박정현;김재홍;안광순
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.87-87
    • /
    • 2010
  • Photoelectrochemical (PEC) systems are promising methods of producing H2 gas using solar energy in an aqueous solution. The photoelectrochemical properties of numerous metal oxides have been studied. Among them, the PEC systems based on TiO2 have been extensively studied. However, the drawback of a PEC system with TiO2 is that only ultraviolet (UV) light can be absorbed because of its large band gap (3.2 - 3.4 eV). Two approaches have been introduced in order to use PEC cells in the visible light region. The first method includes doping impurities, such as nitrogen, into TiO2, and this technique has been extensively studied in an attempt to narrow the band gap. In comparison, research on the second method, which includes visible light water splitting in molecular photosystems, has been slow. Mallouk et al. recently developed electrochemical water-splitting cells using the Ru(II) complex as the visible light photosensitizer. the dye-sensitized PEC cell consisted of a dye-sensitized TiO2 layer, a Pt counter electrode, and an aqueous solution between them. Under a visible light (< 3 eV) illumination, only the dye molecule absorbed the light and became excited because TiO2 had the wide band gap. The light absorption of the dye was followed by the transfer of an electron from the excited state (S*) of the dye to the conduction band (CB) of TiO2 and its subsequent transfer to the transparent conducting oxide (TCO). The electrons moved through the wire to the Pt, where the water reduction (or H2 evolution) occurred. The oxidized dye molecules caused the water oxidation because their HOMO level was below the H2O/O2 level. Organic dyes have been developed as metal-free alternatives to the Ru(II) complexes because of their tunable optical and electronic properties and low-cost manufacturing. Recently, organic dye molecules containing multi-branched, multi-anchoring groups have received a great deal of interest. In this work, tri-branched tri-anchoring organic dyes (Dye 2) were designed and applied to visible light water-splitting cells based on dye-sensitized TiO2 electrodes. Dye 2 had a molecular structure containing one donor (D) and three acceptor (A) groups, and each ended with an anchoring functionality. In comparison, mono-anchoring dyes (Dye 1) were also synthesized. The PEC response of the Dye 2-sensitized TiO2 film was much better than the Dye 1-sensitized or unsensitized TiO2 films.

  • PDF

제작 온도 및 산소 분압에 의존하는 인듐 주석 산화물의 전기적, 광학적 성질 (Transport and optical properties of indium tin oxide films fabricated by reactive magnetron sputtering)

  • 황석민;주홍렬;박장우
    • 한국광학회지
    • /
    • 제14권3호
    • /
    • pp.343-348
    • /
    • 2003
  • 자체 제작한 고밀도(이론 밀도의 99%) ITO(I $n_2$ $O_3$:Sn $O_2$=90 wt%) 타깃과 직류 마그네트론 스퍼터링 방법을 이용하여 산소분압 $P_{o_{2}}$ (0 $P_{o_{2}}$ $\leq$$10^{-5}$ torr)와 성장 온도 Ts(10$0^{\circ}C$ $T_{s}$$\leq$35$0^{\circ}C$)를 변화시키면서 ITO 박막을 제작하고 전기적, 광학적 특성을 조사하였다. ITO박막의 비저항은 제작 온도가 증가함에 따라 감소하다가 $T_{s}$=30$0^{\circ}C$일 때 최저 비저항값 0.30 mΩ.cm를 나타내었고 $T_{s}$>30$0^{\circ}C$ 이상에서는 약간 증가하였다. $T_{s}$=30$0^{\circ}C$에서 제작한 ITO 박막의 최대 전하 농도는 6.6$\times$$10^{20}$ /㎤이었다. $T_{s}$를 고정하고 ITO 박막 제작 시 사용한 산소분압이 증가함에 따라 전하농도, 전하유동도는 급격하게 감소하여 비저항이 크게 증가하는 것으로 나타났다 ITO박막의 최저 비저항과 최대 전하 유동도는 각각 0.3 mΩ.cm와 39.3 $\textrm{cm}^2$/V.s였다. 또한 가시광 영역 (400~700 nm)에서 ITO박막의 광투과도는 80~90%로 높게 나타났다.나타났다.