• Title/Summary/Keyword: transmit power minimization

Search Result 18, Processing Time 0.023 seconds

Minimum Transmit Power Strategy for Poisson Distributed Wireless Ad-hoc Relay Networks in Rayleigh Fading Channels (레일리 페이딩 채널 환경에서 포아손 분포된 무선 Ad-hoc 릴레이 네트워크를 위한 최소 전송 전력 전략)

  • Kim, Nam-Soo;An, Beongku;Kim, Do-Hyeon;Lee, Ye Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.3
    • /
    • pp.25-33
    • /
    • 2008
  • In this paper, the transmit power minimization for Poisson distributed wireless ad-hoc relay networks in Rayleigh fading channels is considered. We investigate two power allocation methods one is a minimum power allocation (MPA) strategy and the other is an equal outage power allocation (EOPA) strategy. We analyze the total transmit power of two allocation methods under the given end-to-end outage probability constraint. Our results show that the MPA achieves more power saving than EOPA, and the power saving is more significant as the number of relay nodes increases.

  • PDF

Robust Secure Transmit Design with Artificial Noise in the Presence of Multiple Eavesdroppers

  • Liu, Xiaochen;Gao, Yuanyuan;Sha, Nan;Zang, Guozhen;Wang, Shijie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2204-2224
    • /
    • 2021
  • This paper studies secure wireless transmission from a multi-antenna transmitter to a single-antenna intended receiver overheard by multiple eavesdroppers with considering the imperfect channel state information (CSI) of wiretap channel. To enhance security of communication link, the artificial noise (AN) is generated at transmitter. We first design the robust joint optimal beamforming of secret signal and AN to minimize transmit power with constraints of security quality of service (QoS), i.e., minimum allowable signal-to-interference-and-noise ratio (SINR) at receiver and maximum tolerable SINR at eavesdroppers. The formulated design problem is shown to be nonconvex and we transfer it into linear matrix inequalities (LMIs). The semidefinite relaxation (SDR) technique is used and the approximated method is proved to solve the original problem exactly. To verify the robustness and tightness of proposed beamforming, we also provide a method to calculate the worst-case SINR at eavesdroppers for a designed transmit scheme using semidefinite programming (SDP). Additionally, the secrecy rate maximization is explored for fixed total transmit power. To tackle the nonconvexity of original formulation, we develop an iterative approach employing sequential parametric convex approximation (SPCA). The simulation results illustrate that the proposed robust transmit schemes can effectively improve the transmit performance.

Robust Transceiver Designs in Multiuser MISO Broadcasting with Simultaneous Wireless Information and Power Transmission

  • Zhu, Zhengyu;Wang, Zhongyong;Lee, Kyoung-Jae;Chu, Zheng;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.173-181
    • /
    • 2016
  • In this paper, we address a new robust optimization problem in a multiuser multiple-input single-output broadcasting system with simultaneous wireless information and power transmission, where a multi-antenna base station (BS) sends energy and information simultaneously to multiple users equipped with a single antenna. Assuming that perfect channel-state information (CSI) for all channels is not available at the BS, the uncertainty of the CSI is modeled by an Euclidean ball-shaped uncertainty set. To optimally design transmit beamforming weights and receive power splitting, an average total transmit power minimization problem is investigated subject to the individual harvested power constraint and the received signal-to-interference-plus-noise ratio constraint at each user. Due to the channel uncertainty, the original problem becomes a homogeneous quadratically constrained quadratic problem, which is NP-hard. The original design problem is reformulated to a relaxed semidefinite program, and then two different approaches based on convex programming are proposed, which can be solved efficiently by the interior point algorithm. Numerical results are provided to validate the robustness of the proposed algorithms.

Optimal Power Allocation for Spatial Division Multiplexing Scheme at Relays in Multiuser Distributed Beamforming Networks (다중 사용자 분산 빔포밍 네트워크의 중계기에서의 공간 분할 다중화 기법을 위한 최적 전력 할당 방법)

  • Ahn, Dong-Gun;Seo, Bang-Won;Jeong, Cheol;Kim, Hyung-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.360-370
    • /
    • 2010
  • In this paper, a distributed beamforming problem is considered in an amplify-and-forward (AF) wireless relay network consist of multiple source-destination pairs and relaying nodes. To exploit degree of freedom of the number of beamformers, in the first step, we proposed that the sources transmit their signals through orthogonal channels. During the second step, the relays transmit their received signals multiplied by complex weights to amplify and compensate for phase changes introduced by the backward channels through one common channel. The optimal beamforming vectors are obtained through minimization of the total relay transmit power while the signal-to-interference-plus-noise ratios (SINRs) at the destinations are above certain thresholds to meet a quality of services (QoSs) level. In the numerical example, it is shown that the proposed scheme needs less transmit power for moderate network data rates than other schemes, such as space division multiplexing or time-division multiplexing scheme.

Beamforming Optimization for Multiuser Two-Tier Networks

  • Jeong, Young-Min;Quek, Tony Q.S.;Shin, Hyun-Dong
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.327-338
    • /
    • 2011
  • With the incitation to reduce power consumption and the aggressive reuse of spectral resources, there is an inevitable trend towards the deployment of small-cell networks by decomposing a traditional single-tier network into a multi-tier network with very high throughput per network area. However, this cell size reduction increases the complexity of network operation and the severity of cross-tier interference. In this paper, we consider a downlink two-tier network comprising of a multiple-antenna macrocell base station and a single femtocell access point, each serving multiples users with a single antenna. In this scenario, we treat the following beamforming optimization problems: i) Total transmit power minimization problem; ii) mean-square error balancing problem; and iii) interference power minimization problem. In the presence of perfect channel state information (CSI), we formulate the optimization algorithms in a centralized manner and determine the optimal beamformers using standard convex optimization techniques. In addition, we propose semi-decentralized algorithms to overcome the drawback of centralized design by introducing the signal-to-leakage plus noise ratio criteria. Taking into account imperfect CSI for both centralized and semi-decentralized approaches, we also propose robust algorithms tailored by the worst-case design to mitigate the effect of channel uncertainty. Finally, numerical results are presented to validate our proposed algorithms.

Data Transition Minimization Algorithm for Text Image (텍스트 영상에 대한 데이터 천이 최소화 알고리즘)

  • Hwang, Bo-Hyun;Park, Byoung-Soo;Choi, Myung-Ryul
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.371-376
    • /
    • 2012
  • In this paper, we propose a new data coding method and its circuits for minimizing data transition in text image. The proposed circuits can solve the synchronization problem between input data and output data in the modified LVDS algorithm. And the proposed algorithm is allowed to transmit two data signals through additional serial data coding method in order to minimize the data transition in text image and can reduce the operating frequency to a half. Thus, we can solve EMI(Electro-Magnetic Interface) problem and reduce the power consumption. The simulation results show that the proposed algorithm and circuits can provide an enhanced data transition minimization in text image and solve the synchronization problem between input data and output data.

Joint Transmitter and Receiver Optimization for Improper-Complex Second-Order Stationary Data Sequence

  • Yeo, Jeongho;Cho, Joon Ho;Lehnert, James S.
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • In this paper, the transmission of an improper-complex second-order stationary data sequence is considered over a strictly band-limited frequency-selective channel. It is assumed that the transmitter employs linear modulation and that the channel output is corrupted by additive proper-complex cyclostationary noise. Under the average transmit power constraint, the problem of minimizing the mean-squared error at the output of a widely linear receiver is formulated in the time domain to find the optimal transmit and receive waveforms. The optimization problem is converted into a frequency-domain problem by using the vectorized Fourier transform technique and put into the form of a double minimization. First, the widely linear receiver is optimized that requires, unlike the linear receiver design with only one waveform, the design of two receive waveforms. Then, the optimal transmit waveform for the linear modulator is derived by introducing the notion of the impropriety frequency function of a discrete-time random process and by performing a line search combined with an iterative algorithm. The optimal solution shows that both the periodic spectral correlation due to the cyclostationarity and the symmetric spectral correlation about the origin due to the impropriety are well exploited.

Improved Genetic Algorithm Based Bit and Subcarrier Allocation Scheme for Efficient Resource Use in Multiuser OFDM Systems (다중 사용자 OFDM 시스템에서 효율적인 자원 활용을 위한 향상된 유전자 알고리즘 기반의 비트-부반송파 할당방법)

  • Song, Jung-Sup;Kim, Sung-Soo;Chang, Kap-Seok;Kim, Dong-Hoi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1095-1104
    • /
    • 2008
  • In multiuser OFDM systems, subcarrier and bit allocation plays an important role for the efficient resource use. However, in multiuser adaptive allocation as a non-linear problem, it is impractical to compute all to get the best solution because of the complexity. We set the goal of minimizing the transmit power while satisfying the BER and minimum bits required to transmit through the highest fitness combination of subcarriers and users. The proposed improved genetic algorithm employs the diversity of adaptive allocation more than existing genetic algorithm. Therefore, from the numerical simulation results, we find that the proposed heuristic algorithm has more performance than the existing algorithms.

Design optimization of a hollow shaft through MATLAB and simulation using ANSYS

  • Mercy, J. Rejula;Stephen, S. Elizabeth Amudhini;Edna, K. Rebecca Jebaseeli
    • Coupled systems mechanics
    • /
    • v.11 no.3
    • /
    • pp.259-266
    • /
    • 2022
  • Non-Traditional Optimization methods are successfully used in solving many engineering problems. Shaft is one of important element of machines and it is used to transmit power from a machine which produces power to a machine which absorbs power. In this paper, ten non-traditional optimization methods that are ALO, GWO, DA, FPA, FA, WOA, CSO, PSO, BA and GSA are used to find minimum weight of hollow shaft to get global optimal solution. The problem has two design variables and two inequality constraints. The comparative results show that the Particle Swarm Optimization outperforms other methods and the results are validated using ANSYS.

Energy-efficient Buffer-aided Optimal Relay Selection Scheme with Power Adaptation and Inter-relay Interference Cancellation

  • Xu, Xiaorong;Li, Liang;Yao, Yingbiao;Jiang, Xianyang;Hu, Sanqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5343-5364
    • /
    • 2016
  • Considering the tradeoff between energy consumption and outage behavior in buffer-aided relay selection, a novel energy-efficient buffer-aided optimal relay selection scheme with power adaptation and Inter-Relay Interference (IRI) cancellation is proposed. In the proposed scheme, energy consumption minimization is the objective with the consideration of relay buffer state, outage probability and relay power control, in order to eliminate IRI. The proposed scheme selects a pair of optimal relays from multiple candidate relays, denoted as optimal receive relay and optimal transmit relay respectively. Source-relay and relay-destination communications can be performed within a time-slot, which performs as Full-Duplex (FD) relaying. Markov chain model is applied to analyze the evolution of relay buffer states. System steady state outage probability and achievable diversity order are derived respectively. In addition, packet transmission delay and power reduction performance are investigated with a specific analysis. Numerical results show that the proposed scheme outperforms other relay selection schemes in terms of outage behavior with power adaptation and IRI cancellation in the same relay number and buffer size scenario. Compared with Buffer State relay selection method, the proposed scheme reduces transmission delay significantly with the same amount of relays. Average transmit power reduction can be implemented to relays with the increasing of relay number and buffer size, which realizes the tradeoff between energy-efficiency, outage behavior and delay performance in green cooperative communications.