• Title/Summary/Keyword: transmissivity of direct and diffuse solar radiation

Search Result 9, Processing Time 0.02 seconds

Analysis of the Transmissivities of Direct and Diffuse Solar Radiation in Multispan Glasshouse (연동 유리온실내의 직달일사 및 산란일사 투과율 해석)

  • 김용현;이석건
    • Journal of Biosystems Engineering
    • /
    • v.23 no.5
    • /
    • pp.439-444
    • /
    • 1998
  • Effects of the number of spans, orientation and latitude on the transmissivities of direct and diffuse solar radiation in multispan glasshouse were analyzed using a computer simulation model (Kim and Lee, 1997). The number of spans did not affect the transmissivity of diffuse solar radiation, ranging 60∼61%. The transmissivities of direct solar radiation were 55∼64% for E-W orientation and 47∼70% for N-S orientation in ten multispan glasshouse. There was no effect of the latitude on the transmissivity of direct solar radiation in domestic regions. Differences in the transmissivity of direct solar radiation between single-span and multispan glasshouse were significant for E-W orientation during winter season; however, those were relatively small for N-S orientation throughout the year. Transmissivity of direct solar radiation decreased with the increasing number of spans for E-W glasshouse, whereas those for N-S glasshouse was hardly affected by the number of spans.

  • PDF

Analysis of Direct and Diffuse Radiation in Plastic Greenhouse (플라스틱 하우스의 직달(直達) 및 산란(散亂) 일사량(日射量) 해석(解析))

  • Koh, Hak-Kyun;Kim, Moon-Ki;Kim, Yong-Hyeon
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.13-24
    • /
    • 1989
  • Direct and diffuse components of solar radiation were measured inside and outside a single-span plastic greenhouse. To analyze the direct solar radiation inside the plastic greenhouse, the cross-section of the greenhouse was assumed to be circular. Then the direct solar radiation transmitted into the greenhouse was calculated theoretically, and compared with the experimental measurements. The results are summarized as follows: (1) The transmissivities of total solar radiation were about 65% on cloudy days and 50% on clear days. For cloudy days, the transmissivity of the total solar radiation was regarded as the transmissivity of sky diffuse radiation. (2) The ratio of the inside effective scattered component of direct solar radiation to the diffuse radiation was 60-65%. (3) It appeared that the seasonal variation of the transmissivity of total solar radiation was adversely affected by the transmissivity of direct solar radiation and the effective scattered coefficient. But the effect of the transmissivity of direct solar radiation was dominant factor. (4) Computer simulation showed that the inside direct solar radiation was decreased as the floor of the plastic greenhouse was higher. (5) The predicted value of the inside direct solar radiation was 3.3% to 29.0% higher than the measured value.

  • PDF

A Simulation Model for the Analysis of Direct and Diffuse Solar Radiation in Glasshouse - Effect of orientation on the transmissivity of direct solar radiation in single- span glasshouse - (유리온실내의 직달일사 또 산란일사 해석을 위한 시뮬레이션 모형 - 동방위가 단동 온실내의 직달일사 투과율에 미치는 영향 -)

  • 김용현;이석건
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.176-182
    • /
    • 1997
  • A simulation model for the analysis of the transmissivity of direct and diffuse solar radiation In glasshouse was developed. This model would be applicable to investigate the influences of time of year, orientation and slope of glasshouse, dimensions of the frames used, and latitude of the site on the transmissivity of direct and diffuse solar radiation in single-span or multispan glasshouse. The transmissivity of diffuse solar radiation was 60.4% for the single-span glass-house. It was independent of both orientation and time of year, During the winter season, the transmissivity of direct solar radiation was 67~69% for the E-W orientation single-span glasshouse, which was 14~16% higher than that for the S-N orientation. Oppositely the transmissivity of direct solar radiation for the S-N orientation was higher than that for the E-W orientation. during the autumn season. There was no influence of the latitude In the country on the transmissivity of direct solar radiation.

  • PDF

Effects of frame ratio and length on the transmissivity of solar radiation in glasshouse by a computer simulation (컴퓨터 시뮬레이션에 의한 유리온실내의 일사 투과율에 미치는 골조율 및 동길이의 영향)

  • 이석건;김용현
    • Journal of Bio-Environment Control
    • /
    • v.8 no.3
    • /
    • pp.202-208
    • /
    • 1999
  • This study was conducted to investigate the effects of the frame ratio and greenhouse length on the transmissivities of direct and diffuse solar radiation in glasshouse using a computer simulation model developed by Kim and Lee(1997). Transmissivity of diffuse solar radiation slightly decreased as the frame ratio increased. There was no effect of number of spans on the transmissivity of diffuse solar radiation at the same frame ratio. In single or multispan glasshouse, transmissivity of direct solar radiation was 1.5-3.0% higher at the frame ratio of 11.3% than those at the frame ratio of 14.9%. Also the transmissivity of direct solar radiation was 1.5-3.0% lower at the frame ratio of 18.3% than those at the frame ratio of 14.9%. Effect of the increased or decreased frame ratio on the transmissivity of direct solar radiation was similar in I-W or S-N glasshouse. Since the high transmissivity of direct solar radiation exerted a beneficial influence upon the plant growth during winter season, the light and endurable structural members were needed to maximize the transmission of solar radiation in glasshouse. Transmissivity of direct solar radiation in I-W or S-N glasshouse did not vary with the length of 24.5m long or more.

  • PDF

A simulation model for the analysis of direct and diffuse solar radiation in glasshouse - Effect of orientation on the transmissivity of direct solar radiation in glasshouse - (유리온실내의 직달일사 및 산란일사 해석을 위한 시뮬레이션 모형 개발 - 동방위가 온실내의 직달일사 투과도에 미치는 영향 -)

  • 김용현;이석건
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1997.11a
    • /
    • pp.1-7
    • /
    • 1997
  • 온실이란 식물 생육에 요구되는 태양광을 유용하게 활용하기 위하여 투명한 피복재가 사용된 구조물을 일컫는다. 온실내로 투과되는 일사량은 온실이 설치된 지역의 위도, 온실의 동방위 및 형상, 구조물의 재원, 피복재의 광학적 특성, 년중일수, 기상 조건, 지붕면의 경사각 등에 따라 변화된다. 일반적으로 겨울철에 온실내의 일사량은 식물의 정상적인 생육에 제약이 되는 요소로 작용한다. (중략)

  • PDF

Effect of roof slope on the transmissivity of direct and diffuse solar radiation in multispan glasshouse by a computer simulation (컴퓨터 시뮬레이션에 의한 연동 유리온실내의 직달일사 및 산란일사 투과율에 미치는 지붕경사각의 영향)

  • 김용현;이석건
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1998.05a
    • /
    • pp.27-32
    • /
    • 1998
  • 국내에 보급되어 있는 유리온실은 네덜란드에서 수입된 벤로형(Venlo type or Dutchlite)과 벤로형에 비해서 동고가 높으며 온실 한 동의 폭이 상대적으로 큰 광폭형(widespan type)이 대부분을 차지하고 있다. 벤로형 은실의 측고는 3.5~4.0m로서 다소 차이가 있으나, 한 동의 폭과 지붕경사면의 길이가 일정하기 때문에 온실의 지붕경사각은 대부분 22$^{\circ}$를 나타낸다. (중략)

  • PDF

Effect of roof slope on the transmissivities of direct and diffuse solar radiation in multispan glasshouse by a computer simulation (컴퓨터 시뮬레이션에 의한 연동 유리온실내의 직달일사 및 산란일사 투과율에 미치는 지붕경사각의 영향)

  • 이석건;김용현
    • Journal of Bio-Environment Control
    • /
    • v.7 no.4
    • /
    • pp.324-329
    • /
    • 1998
  • Effect of roof slope on the transmissivities of direct and diffuse solar radiation using a computer simulation model developed by Kim and Lee(1997) was analyzed for 10-span glasshouse located in Seoul(37$^{\circ}$34' N), Chonju(35$^{\circ}$49' N) and Cheju(33$^{\circ}$31' N). Transmissivities of diffuse solar radiation in glasshouse with roof slopes of 15, 20, 24.6, 30 and 35 degree were calculated as 61.3, 61.6, 61.7, 56.8 and 58.6%, respectively. Transmissivities of direct solar radiation(TDSR) during the period except summer season were highly affected by the roof slope. During the winter season, TDSR in glasshouse with roof slopes of 30 and 35 degree were higher than those with other roof slopes. Also, during the period except winter season, TDSR in glasshouse with roof slope of 20 degree were higher than those with other roof slopes. Difference in TDSR with latitude was significant during the period from October to February. At this period TDSR were highly appeared at lower latitude. Effect of roof slope on TDSR in S-N greenhouse was smaller than those in E-W greenhouse. It is considered that direct solar radiation highly transmitted in the glasshouse with roof slope of 20 degree.

  • PDF

The effects of clouds on enhancing surface solar irradiance (구름에 의한 지표 일사량의 증가)

  • Jung, Yeonjin;Cho, Hi Ku;Kim, Jhoon;Kim, Young Joon;Kim, Yun Mi
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.131-142
    • /
    • 2011
  • Spectral solar irradiances were observed using a visible and UV Multi-Filter Rotating Shadowband Radiometer on the rooftop of the Science Building at Yonsei University, Seoul ($37.57^{\circ}N$, $126.98^{\circ}E$, 86 m) during one year period in 2006. 1-min measurements of global(total) and diffuse solar irradiances over the solar zenith angle (SZA) ranges from $20^{\circ}$ to $70^{\circ}$ were used to examine the effects of clouds and total optical depth (TOD) on enhancing four solar irradiance components (broadband 395-955 nm, UV channel 304.5 nm, visible channel 495.2 nm, and infrared channel 869.2 nm) together with the sky camera images for the assessment of cloud conditions at the time of each measurement. The obtained clear-sky irradiance measurements were used for empirical model of clear-sky irradiance with the cosine of the solar zenith angle (SZA) as an independent variable. These developed models produce continuous estimates of global and diffuse solar irradiances for clear sky. Then, the clear-sky irradiances are used to estimate the effects of clouds and TOD on the enhancement of surface solar irradiance as a difference between the measured and the estimated clear-sky values. It was found that the enhancements occur at TODs less than 1.0 (i.e. transmissivity greater than 37%) when solar disk was not obscured or obscured by optically thin clouds. Although the TOD is less than 1.0, the probability of the occurrence for the enhancements shows 50~65% depending on four different solar radiation components with the low UV irradiance. The cumulus types such as stratoculmus and altoculumus were found to produce localized enhancement of broadband global solar irradiance of up to 36.0% at TOD of 0.43 under overcast skies (cloud cover 90%) when direct solar beam was unobstructed through the broken clouds. However, those same type clouds were found to attenuate up to 80% of the incoming global solar irradiance at TOD of about 7.0. The maximum global UV enhancement was only 3.8% which is much lower than those of other three solar components because of the light scattering efficiency of cloud drops. It was shown that the most of the enhancements occurred under cloud cover from 40 to 90%. The broadband global enhancement greater than 20% occurred for SZAs ranging from 28 to $62^{\circ}$. The broadband diffuse irradiance has been increased up to 467.8% (TOD 0.34) by clouds. In the case of channel 869.0 nm, the maximum diffuse enhancement was 609.5%. Thus, it is required to measure irradiance for various cloud conditions in order to obtain climatological values, to trace the differences among cloud types, and to eventually estimate the influence on solar irradiance by cloud characteristics.