• Title/Summary/Keyword: transmission priority

Search Result 307, Processing Time 0.026 seconds

Design and Implementation of DMA priority section module (DMA Priority selection module 설계 및 구현)

  • Hwang, In-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.264-267
    • /
    • 2002
  • This paper proposed a effective priority selection algorithm named weighted round-robin algorithm and show the implementation result of DMAC priority selection module using prosed weighted round-robin algorithm. I parameterize timing constraints of each functional module, which decide the effectiveness of system. Proposed weighted round-robin algorithm decide the most effective module for data transmission using parameterize timing constraints and update timing parameter of each module for next transmission module selection. I implement DMAC priority selection module using this weighted round-robin algorithm and can improve the timing effective for data transmission from memory to functional module or one functional module to another functional module.

  • PDF

Performance Modelling of Adaptive VANET with Enhanced Priority Scheme

  • Lim, Joanne Mun-Yee;Chang, YoongChoon;Alias, MohamadYusoff;Loo, Jonathan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1337-1358
    • /
    • 2015
  • In this paper, we present an analytical and simulated study on the performance of adaptive vehicular ad hoc networks (VANET) priority based on Transmission Distance Reliability Range (TDRR) and data type. VANET topology changes rapidly due to its inherent nature of high mobility nodes and unpredictable environments. Therefore, nodes in VANET must be able to adapt to the ever changing environment and optimize parameters to enhance performance. However, there is a lack of adaptability in the current VANET scheme. Existing VANET IEEE802.11p's Enhanced Distributed Channel Access; EDCA assigns priority solely based on data type. In this paper, we propose a new priority scheme which utilizes Markov model to perform TDRR prediction and assign priorities based on the proposed Markov TDRR Prediction with Enhanced Priority VANET Scheme (MarPVS). Subsequently, we performed an analytical study on MarPVS performance modeling. In particular, considering five different priority levels defined in MarPVS, we derived the probability of successful transmission, the number of low priority messages in back off process and concurrent low priority transmission. Finally, the results are used to derive the average transmission delay for data types defined in MarPVS. Numerical results are provided along with simulation results which confirm the accuracy of the proposed analysis. Simulation results demonstrate that the proposed MarPVS results in lower transmission latency and higher packet success rate in comparison with the default IEEE802.11p scheme and greedy scheduler scheme.

A Study on Data Transmission Using Dual Frequency (Dual 주파수를 이용한 Data 전송에 관한 연구)

  • Lee, Jin;Park, Sung Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.398-402
    • /
    • 2018
  • The following conclusions were obtained after analyzing the data transmission characteristics using two frequencies and studying a system that selects data with a good reception frequency as a priority data. Data transmission and reception using two frequencies were measured at -41 to -51 dBm when the frequency was normal, and data transmitted at 900 MHz was selected as priority data. When priority frequency failure occurred, the frequency reception data of the next rank was automatically adopted, and when the frequency of the next rank was disturbed, the priority frequency search was performed again. The above results show that the use of two frequencies enables more stable data transmission and transmission, and further studies should be continued to expand the transmission and reception distances.

A Message Priority-based TCP Transmission Algorithm for Drone Systems (드론 시스템을 위한 메시지 우선순위 기반 TCP 통신 알고리즘)

  • Choi, Joon-Hyuck;Kim, Bo-Ram;Lee, Dong-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.509-516
    • /
    • 2018
  • TCP is a well-known communication protocol which is widely used for reliable message transmissions. The urgent mechanism of TCP plays a key role to transmit messages with a high priority. If a high priority message occurs at the transmitting node, the urgent mechanism informs the receiving node about the presence of a high priority message prior to its transmission so that the receiving node can be prepared for handling this message in advance. This implies that the existing urgent mechanism of TCP does not guarantee an immediate or faster delivery of the high priority message itself. Therefore, the ability of priority-based transmission is required on TCP not only to ensure reliable transmissions of normal messages but also to offer a differentiated service according to the priority of message. This paper presents a priority-based transmission algorithm over TCP using a priority queue in a multi-threaded environment. The effectiveness of the proposed algorithm is explored using an experimental setup in which various messages with different priority levels are transmitted.

Study on the Transmission Delay of Two Priority Classes in One Node in the Foundation Fieldbus (파운데이션 필드버스에서 두 개의 우선순위 데이터를 갖는 노드의 데이터 전송지연시간에 관한 연구)

  • Lee, Yong-Hee;Hong, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.407-414
    • /
    • 2009
  • The foundation fieldbus(FF) is one of the fieldbuses most widely used for process control and automation, In order for system designer to optimize medium management, it is imperative to predict transmission delay time of data. In a former research, mathematical modeling to analyze transmission delay of FF token-passing system has been developed based on the assumption that a device node has only one priority data(1Q model), From 1Q model, all of the device nodes, which are connected on the FF system, are defined priority level in advance, and as system operates, data are generated based on given priority level. However, in practice, some non-periodic data can have different priority levels from one device. Therefore, new mathematical model is necessary for the case where different priority levels of data are created under one device node(2Q model). In this research, the mathematical model for 2Q model is developed using the equivalent queue model. Furthermore, the characteristics of transmission delay of 2Q model which is presented in this paper were compared with 1Q model. The validity of the analytical model was verified by using a simulation experiment.

Space and Time Priority Queues with Randomized Push-Out Scheme (확률적 밀어내기 정책을 가지는 공간-시간 우선순위 대기행렬)

  • Kilhwan Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.57-71
    • /
    • 2023
  • In this study, we analyze a finite-buffer M/G/1 queueing model with randomized pushout space priority and nonpreemptive time priority. Space and time priority queueing models have been extensively studied to analyze the performance of communication systems serving different types of traffic simultaneously: one type is sensitive to packet delay, and the other is sensitive to packet loss. However, these models have limitations. Some models assume that packet transmission times follow exponential distributions, which is not always realistic. Other models use general distributions for packet transmission times, but their space priority rules are too rigid, making it difficult to fine-tune service performance for different types of traffic. Our proposed model addresses these limitations and is more suitable for analyzing communication systems that handle different types of traffic with general packet length distributions. For the proposed queueing model, we first derive the distribution of the number of packets in the system when the transmission of each packet is completed, and we then obtain packet loss probabilities and the expected number of packets for each type of traffic. We also present a numerical example to explore the effect of a system parameter, the pushout probability, on system performance for different packet transmission time distributions.

A Study on the Low-Priority Symbol Transmission in AT-DMB System

  • Erke, Li;Kim, Hanjong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.755-757
    • /
    • 2009
  • Since the research of advanced terrestrial digital multimedia broadcasting system is still in progress, and in our previous paper, in which we introduced how to combine one conventional transmitted symbol with two additional bits to form a new symbol transmission, the bit error performance of LP bits is not realizable, because even we implemented the turbo code to protect the LP bits transmission, to obtain a certain good bit error probability, the value of $E_b/N_0$ cost highly. In this paper, we modified the composition of low-priority symbol and high-priority symbol, and through the system presented in previous paper we get a better simulation result of the LP symbol transmission.

  • PDF

Energy Efficient and Multimedia Traffic Friendly MAC Protocol in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적이고 멀티미디어 트래픽에 적합한 MAC 프로토콜)

  • Kim, Seong Cheol;Kim, Hye Yun;Kim, Joong Jae
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1460-1465
    • /
    • 2016
  • In this paper, we propose an energy efficient and multimedia traffic friendly MAC protocol (EEMF-MAC) that controls sender's wakeup period based on the data packet's transmission urgency and the receiver's wakeup periods based on the received data packet traffic loads. The protocol is useful for applications such as object tracking, real time data gathering, in which priority-based packet transmission is required. The basic idea of EEMF-MAC is that it uses the priority concept with transmission urgency of sender's data packet to reduce the transmission delay of the urgent data and it also uses duty cycling technique in order to achieve energy efficiency. EEMF-MAC showed a better performance in energy efficiency and packet transmission delay compared to existing protocols, RI-MAC and EE-RI-MAC.

Preemptive Ethernet Controller to Improve Real-Time Characteristics of IEC 61850 Protocol (IEC 61850 프로토콜의 실시간성 향상을 위한 선점형 이더넷 컨트롤러)

  • Lee, Bum-Yong;Park, Tae-Rim;Park, Jae-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1923-1928
    • /
    • 2010
  • The IEC 61850 protocol proposed for the interoperability between IEDs(intelligent electronic devices) adopts the prioritized switched ethernet as its communication channel because substation bus is utilized to exchange both real-time and non real-time messages. The prioritized switched ethernet uses IEEE 802.1Q/p QoS(Quality of Service) in addition to IEEE 802.3 ethernet to enhance the real-time characteristics. However, IEEE 802.1Q/p QoS has priority-blocking problem that occurs when higher-priority frame transmission request during lower-priority frame transmission. To resolve this problem, this paper proposes P(Preemptive)-Ethernet. P-Ethernet uses the modified IEEE 802.1Q/p frame format and new priority preemption mechanism. This paper also implements P-Ethernet controller using FPGA (Virtex-4) and MicroBlaze processor. From the implementation results, P-Ethernet controller shows a improved latency and jitter of transmission period compare to the normal ethernet controller.

A Priority Based Transmission Control Scheme Considering Remaining Energy for Body Sensor Network

  • Encarnacion, Nico;Yang, Hyunho
    • Smart Media Journal
    • /
    • v.4 no.1
    • /
    • pp.25-32
    • /
    • 2015
  • Powering wireless sensors with energy harvested from the environment is coming of age due to the increasing power densities of both storage and harvesting devices and the electronics performing energy efficient energy conversion. In order to maximize the functionality of the wireless sensor network, minimize missing packets, minimize latency and prevent the waste of energy, problems like congestion and inefficient energy usage must be addressed. Many sleep-awake protocols and efficient message priority techniques have been developed to properly manage the energy of the nodes and to minimize congestion. For a WSN that is operating in a strictly energy constrained environment, an energy-efficient transmission strategy is necessary. In this paper, we present a novel transmission priority decision scheme for a heterogeneous body sensor network composed of normal nodes and an energy harvesting node that acts as a cluster head. The energy harvesting node's decision whether or not to clear a normal node for sending is based on a set of metrics which includes the energy harvesting node's remaining energy, the total harvested energy, the type of message in a normal node's queue and finally, the implementation context of the wireless sensor network.