• Title/Summary/Keyword: transmission electron microscope equipped with energy dispersive X-ray spectrometer (TEM-EDS)

Search Result 5, Processing Time 0.021 seconds

Asbestos Analysis of China Sepiolite by Transmission Electron Microscopy (중국산 해포석 내 석면 함유 유무 분석)

  • Song, Se Wook;Chung, Yong Hyun;Han, Jeong Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.3
    • /
    • pp.205-211
    • /
    • 2013
  • Objectives: 21 sepiolite substances produced in China were investigated for the presence of asbestos in their materials. Materials and methods: In order to identify asbestos in sepiolite substances, test materials were analyzed using a transmission electron microscope equipped with energy dispersive X-ray spectrometer (TEM-EDS) for confirming their shape and components (atomic %). Results: Five of 21 sepiolte substances were asbestos-containing materials. Two chrysotile containing sepiolite proved to be asbestoscontaining materials, as did two chrysotile mixed with tremolite containing sepiolite. 16 sepiolite substances did not contain asbestos materials. Conclusions: When importing sepiolite substances, they must be analyzed to determine if there is asbestos in their materials.

Assessment of Acid Solubility Test on Korean Asbestos by Transmission Electron Microscope Equipped with Energy Dispersive X-ray Spectrometer (한국산 석면의 산 용해도 평가 연구)

  • Chung, Yong Hyun;Han, Jeong Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.146-151
    • /
    • 2014
  • Objectives: Chrysotile is mineralogically distinct from amphiboles, displaying a notably different chemical structure. The thin sheets that form chrysotile fiber lead to the ability of the lung/macrophage system to decompose the chrysotile fibers. This study was performed in order to compare the physicochemical characteristics of Korean asbestos with those of Canadian amphiboles. Materials: An acid solubility test for each test substance was done to compare pH 4.5 and pH 1.2 distilled water. Asbestos fibers which had been placed in acid solutions for five days, five weeks and weeks were analyzed with a transmission electron microscope equipped with an energy dispersive X-ray spectrometer (TEM-EDS). Results: The composition element (Mg) of Korean chrysotile, Korean anthophyllite and Canadian amosite significantly decreased from 5 days and also decreased significantly after 5 weeks and 10 weeks. Only the composition (Mg) of Canadian crocidolite did not change under any conditions. From 5 days, the Mg of Korean chrysotile, Korean anthophyllite and Canadian amosite were significantly lower than before the acid treatment, but there were no changes over time or by the pH of the acid solutions. Particularly after 10 weeks, the composition (Mg) of Korean chrysotile in the pH 1.2 acid solution showed a rapid reduction of 15.86%. Conclusions: Korean chrysotile was very weak in an acid environment, beginning to show significant changes after 5 days. The Mg component rapidly decreased after 10 weeks in the pH 1.2 acid solution.

A study of microstructure of Ni-monosilicide fabricated with a thermal evaporator (열증착법으로 제조된 니켈 모노실리사이드의 미세구조 연구)

  • 안영숙;송오성;양철웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.6
    • /
    • pp.703-708
    • /
    • 1999
  • Silicides have been used extensively in ULSI logic device fabrication as contact materials for the active areas as well as the poly- Si gates. NiSi is a promising candidate for submicron device application due to less volume expansion, low formation temperature, little silicon consumption, and large stable processing temperature window. In this report, the microstructure of nickel silicides fabricated with a thermal evaporator has been investigated. We observed systematic transformation of Ni silicides of $Ni_2$Si, NiSi, $NiSi_2$, as annealing temperature increases. All the silicides have been identified by a X-ray diffractometer (XRD). The cross-sectional microstructure of silicides was examined by a transmission electron microscope (TEM) equipped with a energy dispersive spectrometer(EDS). The surface roughness of silicides was measured by scanning probe microscope(SPM). Although we observed thin oxide layer existed at the $Ni/NiSi_{x}$ interface, we fabricated successfully $550\AA$-thick planar Ni-monosilicide at the temperature range of$ 400~700^{\circ}C$.

  • PDF

Toxicity of Talc Containing Tremolite asbestos on Respiratory System in Sprague-Dawely Rats (랫드의 기도로 투여된 투각섬석함유활석이 호흡기계에 미치는 영향 연구)

  • Chung, Yong-Hyun;Han, Jeong-Hee;Kang, Min-Gu;Lee, Sung-Bae;Kim, Jong-Kyu;Kim, Hyeon-Yeong;Yang, Jung-Sun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.2
    • /
    • pp.119-130
    • /
    • 2010
  • Pulmonary toxicity of talc containing tremolite asbestos (TCT) has been studied in term sequential in Sprague-Dawely rats. UICC chrysotile(average diameter 0.03${\mu}m$, average length 2.93${\mu}m$) was applied as the positive control. TCT was analyzed for its physicochemical properties by transmission electron microscope equipped with energy dispersive X-ray spectrometer(TEM-EDS). The effects of 2mg TCT(talc average diameter 9.7${\pm}$8.4${\mu}m$; tremolite average diameter 1.6${\pm}$1.6${\mu}m$, average length 10.8${\pm}$7.0${\mu}m$) on pathological changes were evaluated after 1, 8 weeks instilled into rat lungs. 2mg Chrysotile continuously affected lung pathological changes. Inflammation and granuloma response broke out from 1 week after instilled with chrysotile and the pathological examination further showed increased legions of lung after 8 weeks. But TCT did not showed lung pathological changes. The biopersistence of TCT and chrysotile was evaluated by TEM- EDS. Whereas chrysotile continuously have retained to 8 weeks instilled into rat lungs, talc of TCT showed statistically significant decrease of diameter from 1 weeks and statistically significant change in Si atomic % compositions at 8 weeks instilled into rat lungs. Physicochemical properties of tremolite of TCT were not affected until 8 weeks instilled into rat lungs. This study showed that the durability of TCT in the lungs is much weaker than chrysotile.

Physicochemical Property Changes on Respiratory System of Rats After Intratracheal Instillation Exposure to Korea Chrysotile and Anthophyllite (국내산 백석면과 안소필라이트의 물리화학적 특성과 호흡기계 내 변화 연구)

  • Chung, Yong Hyun;Han, Jeong Hee;Kang, Min Gu;Kim, Jong Kyu;Yang, Jeong Sun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.224-234
    • /
    • 2012
  • Objectives: To assess the hazard of Korea chrysotile and anthophylite, fibers were analyzed for their physicochemical properties by transmission electron microscope equipped with energy dispersive X-ray spectrometer (TEM-EDS). Methods: To evaluate the biopersistence of 2 domestic asbestos, Sprague-Dawely rats were exposed to 2 mg asbestos by intratracheal instillation. Each asbestos (chrysotile ; $8,814,244{\times}10^6$ fibers/mg, average size $0.08{\mu}m{\times}4.39{\mu}m$, anthophyllite ; $5,182{\times}10^6$ fibers/mg, average size $0.95{\mu}m{\times}7.29{\mu}m$) were evaluated after a single intratracheal instillation. At times from 1 week to 4 weeks after exposure, the numbers of asbestos fivers in the bronchoalveolar lavage fluid and in the lung were calculated. Results: Anthophyllite fivers continuously have retained for 4 weeks but chrysotile fivers were rarely found at 4 weeks after exposure in the bronchoalveolar lavage fluid. Chrysotile fivers at 4 weeks after treatment were not observed but anthophyllite was easily observed in the lung with phase contrast microscopy. According to electron microscopic observation of asbestos in the lung, within 1 week after the administration of chrysotile fivers were decreased rapidly but anthophyllite fivers were very little change for 4 weeks. When chrysotile fivers have been lost Fe in 1 week, there were no significant changes in anthophyllite fivers in the lung. Conclusions: These findings indicate that after a long time exposure to chrysotile, asbestos bodies can not be found in the bronchoalveolar lavage fluid.