• 제목/요약/키워드: transmembrane protein

검색결과 284건 처리시간 0.023초

Cytosolic prion protein induces apoptosis in human neuronal cell SH-SY5Y via mitochondrial disruption pathway

  • Wang, Xin;Dong, Chen-Fang;Shi, Qi;Shi, Song;Wang, Gui-Rong;Lei, Yan-Jun;Xu, Kun;An, Run;Chen, Jian-Ming;Jiang, Hui-Ying;Tian, Chan;Gao, Chen;Zhao, Yu-Jun;Han, Jun;Dong, Xiao-Ping
    • BMB Reports
    • /
    • 제42권7호
    • /
    • pp.444-449
    • /
    • 2009
  • Different neurodegenerative disorders like prion disease, is caused by protein misfolding conformers. Reverse-transfected cytosolic prion protein (PrP) and PrP expressed in the cytosol have been shown to be neurotoxic. To investigate the possible mechanism of neurotoxicity due to accumulation of PrP in cytosol, a PrP mutant lacking the signal and GPI (CytoPrP) was introduced into the SH-SY5Y cell. MTT and trypan blue assays indicated that the viability of cells expressing CytoPrP was remarkably reduced after treatment of MG-132. Obvious apoptosis phenomena were detected in the cells accumulated with CytoPrP, including loss of mitochondrial transmembrane potential, increase of caspase-3 activity, more annexin V/PI-double positive-stained cells and reduced Bcl-2 level. Moreover, DNA fragmentation and TUNEL assays also revealed clear evidences of late apoptosis in the cells accumulated CytoPrP. These data suggest that the accumulation of CytoPrP in cytoplasm may trigger cell apoptosis, in which mitochondrial relative apoptosis pathway seems to play critical role.

G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells

  • Choi, Hye Yeon;Saha, Subbroto Kumar;Kim, Kyeongseok;Kim, Sangsu;Yang, Gwang-Mo;Kim, BongWoo;Kim, Jin-Hoi;Cho, Ssang-Goo
    • BMB Reports
    • /
    • 제48권2호
    • /
    • pp.68-80
    • /
    • 2015
  • G protein-coupled receptors (GPCRs) are a large class of transmembrane receptors categorized into five distinct families: rhodopsin, secretin, adhesion, glutamate, and frizzled. They bind and regulate 80% of all hormones and account for 20-50% of the pharmaceuticals currently on the market. Hundreds of GPCRs integrate and coordinate the functions of individual cells, mediating signaling between various organs. GPCRs are crucial players in tumor progression, adipogenesis, and inflammation. Several studies have also confirmed their central roles in embryonic development and stem cell maintenance. Recently, GPCRs have emerged as key players in the regulation of cell survival, proliferation, migration, and self-renewal in pluripotent (PSCs) and cancer stem cells (CSCs). Our study and other reports have revealed that the expression of many GPCRs is modulated during the generation of induced PSCs (iPSCs) or CSCs as well as during CSC sphere formation. These GPCRs may have crucial roles in the regulation of self-renewal and other biological properties of iPSCs and CSCs. This review addresses the current understanding of the role of GPCRs in stem cell maintenance and somatic reprogramming to PSCs or CSCs.

Quantification of Her-2/Neu Gene in Breast Cancer Patients using Real Time-Polymerase Chain Reaction (Q-PCR) and Correlation with Immunohistochemistry Findings

  • Abdul Murad, Nor Azian;Razak, Zuraini Abdul;Hussain, Rosniza Muhammmad;Syed Hussain, Sharifah Noor Akmal;Ching Huat, Clarence Ko;Siti Aishah, Che Md. Ali;Abdullah, Norlia;Muhammad, Rohaizak;Ibrahim, Naqiyah;Jamal, Rahman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권3호
    • /
    • pp.1655-1659
    • /
    • 2013
  • Background: HER-2/neu is a proto-oncogene that encodes a transmembrane tyrosine kinase growth factor which is crucial for stimulating growth and cellular motility. Overexpression of HER-2/neu is observed in 10-35% of human breast cancers and is associated with pathogenesis, prognosis as well as response to therapy. Given the imperative role of HER-2/neu overexpression in breast cancer, it is important to determine the magnitude of amplification which may facilitate a better prognosis as well as personalized therapy in affected patients. In this study, we determined HER-2/neu protein expression by immunohistochemistry (IHC) concurrently with HER-2/neu DNA amplification by quantitative real time-polymerase chain reaction (Q-PCR). Materials and Methods: A total of 53 paired tissue samples from breast cancer patients were frozen-sectioned to characterize the tumour and normal tissues. Only tissues with 80% tumour cells were used in this study. For confirmation, Q-PCR was used to determine the HER-2/neu DNA amplification. Results: We found 20/53 (37.7%) of the tumour tissues to be positive for HER-2/neu protein overexpression using IHC. Out of these twenty, only 9/53 (17%) cases were in agreement with the Q-PCR results. The concordance rate between IHC and Q-PCR was 79.3%. Approximately 20.7% of positive IHC cases showed no HER-2/neu gene amplification using Q-PCR. Conclusion: In conclusion, IHC can be used as an initial screening method for detection of the HER-2/neu protein overexpression. Techniques such as Q-PCR should be employed to verify the IHC results for uncertain cases as well as determination of HER-2/neu gene amplification.

Solute Carrier SLC41A1 'A MINI REVIEW'

  • Basnet Hom Bahadur
    • 한국환경성돌연변이발암원학회지
    • /
    • 제25권2호
    • /
    • pp.60-65
    • /
    • 2005
  • The human solute carrier, SLC41Al, is a $Mg^{2}+$ transporter that is regulated by extracellular magnesium. Although intracellular magnesium plays a fundamental role in cellular metabolism, little is known about how $Mg^{2}+$ is taken up and controlled by cells. Magnesium plays a fundamental role in cellular metabolism so that its control within the body is critical. Magnesium homeostasis is principally a balance between intestinal absorption of dietary magnesium and renal excretion of urinary magnesium. The kidney, mainly the distal convoluted tubule, controls magnesium reabsorption. Although renal reabsorption is under the influence of many hormones, selective regulation of magnesium transport is due to intrinsic control involving transcriptional processes and synthesis of transport proteins. Using microarray analysis, identification of the genetic elements involved with this transcriptional control has been begun. SLC41A1(GenBank Accession No. AJ514402), comprises 10 putative transmembrane domains, two of which are highly homologous to the integral membrane part of the prokaryote transports $Mg^{2}+$ and other divalent cations $Sr^2+,\;Zn^2+,\;Cu^2+,\;Fe^2+,\;Co^2+,\;Ba^2+,\;and\;Cd^2+,\;but\;not\;Ca^2+,\;Mn^2+,\;and\;Ni^2+.$ Transport of $Mg^{2}+$ by SLC41Al is rheogenic, voltage dependent, and not coupled to Na or Cl. Expressed SLC41Al transports a range of other divalent cations: $Mg^{2+},\;Sr^{2+},\;Zn^{2+},\;Cu^{2+},\;Fe^{2+},\;Co^{2+},\;Ba^{2+},\;and\;Cd^{2+}$. The divalent cations $Ca^{2+},\;Mn^{2+},\;and\;Ni^{2+}$and the trivalent ion $Gd^{3+}$ did not induce currents nor did they inhibit $Mg^{2+}$ transport. The nonselective cation $La^{3+}$ abolishes $Mg^{2+}$ uptake. Computer analysis of the SLC41Al protein structure reveals that it belongs to MgtE protein family & suggested that the human solute carrier, SLC41Al, might be a eukaryotic $Mg^{2+}$ transporter closely related $(60-70\%)$ protein encoded by SLC41A2 is a $Mg^{2}+$ transporter that might be involved in magnesium homeostasis in epithelial cells also transports a range of other divalent cations: $Ba^2,\;Ni^2,\;CO^2,\;Fe^2,\;or\;Mn^2,\;but\;not\;Ca^2,\;Zn^2,\;or\;Cu^{2+}$ that may have related functional properties.

  • PDF

The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents

  • Lee, Young-Sup;Shin, Donghyun;Lee, Wonseok;Taye, Mengistie;Cho, Kwanghyun;Park, Kyoung-Do;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권1호
    • /
    • pp.36-42
    • /
    • 2016
  • Milk-related traits (milk yield, fat and protein) have been crucial to selection of Holstein. It is essential to find the current selection trends of Holstein. Despite this, uncovering the current trends of selection have been ignored in previous studies. We suggest a new formula to detect the current selection trends based on single nucleotide polymorphisms (SNP). This suggestion is based on the best linear unbiased prediction (BLUP) and the Fisher's fundamental theorem of natural selection both of which are trait-dependent. Fisher's theorem links the additive genetic variance to the selection coefficient. For Holstein milk production traits, we estimated the additive genetic variance using SNP effect from BLUP and selection coefficients based on genetic variance to search highly selective SNPs. Through these processes, we identified significantly selective SNPs. The number of genes containing highly selective SNPs with p-value <0.01 (nearly top 1% SNPs) in all traits and p-value <0.001 (nearly top 0.1%) in any traits was 14. They are phosphodiesterase 4B (PDE4B), serine/threonine kinase 40 (STK40), collagen, type XI, alpha 1 (COL11A1), ephrin-A1 (EFNA1), netrin 4 (NTN4), neuron specific gene family member 1 (NSG1), estrogen receptor 1 (ESR1), neurexin 3 (NRXN3), spectrin, beta, non-erythrocytic 1 (SPTBN1), ADP-ribosylation factor interacting protein 1 (ARFIP1), mutL homolog 1 (MLH1), transmembrane channel-like 7 (TMC7), carboxypeptidase X, member 2 (CPXM2) and ADAM metallopeptidase domain 12 (ADAM12). These genes may be important for future artificial selection trends. Also, we found that the SNP effect predicted from BLUP was the key factor to determine the expected current selection coefficient of SNP. Under Hardy-Weinberg equilibrium of SNP markers in current generation, the selection coefficient is equivalent to $2^*SNP$ effect.

Semaphoring mAb: a New Guide in RIT in Inhibiting the Proliferation of Human Skin Carcinoma

  • Liu, Yuan;Ma, Jing-Yue;Luo, Su-Ju;Sun, Chen-Wei;Shao, Li-Li;Liu, Quan-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권3호
    • /
    • pp.941-945
    • /
    • 2015
  • Semaphoring is a transmembrane receptor which participates in many cytokine-mediated signal pathways that are closely related to the angiogenesis, occurrence and development of carcinoma. The present study was designed to access the effect of mono-antibody (mAb) guided radioimmunotherapy (RIT) on skin carcinoma and investigate the potential mechanisms. Semaphoring mAb was acquired from mice (Balb/c), purified with rProtein A column; purity, concentration and activity were tested with SDS-PAGE and indirect ELISA; specificity and expression on the cutanuem carcinoma line and tissue were tested by Western blotting; morphology change was assessed by microscopy. MTT assay and colony inhibition tests were carried out to test the influence on the proliferation of tumor cells; Western blotting was also carried out for expression of apoptosis-associated (caspase-3, Bax, Bcl-2) and proliferation-related (PI3K, p-Akt, Akt, p-ERK1/2, ERK1/2) proteins and analyse the change in signal pathways (PI3K/Akt and MEK/ERK). The purity of purified semaphorin mAb was 96.5% and the titer is about $1{\times}10^6$. Western blotting showed semaphoring mAb to have specifically binding stripes with semaphoring b1b2 protein, B16F10, and A431 cells at 39KDa, 100KDa and 130KDa, respectively. Positive expression was detected both in cutanuem carcinoma line and tissue and it mostly located in cell membranes. MMT assay revealed dose-relate and time-relate inhibitory effect of semaphorin mAb on A431 and B16F10. Colony inhibition tests also showed dose-relate inhibitory effects. Western blotting demonstrated the expression of apoptosis and proliferation-related protein and changes in signal pathway. In conclusion, we demonstrated that semaphorin is highly expressed on the tumor cell-surfaces and RIT with semaphorin mAb has effect in i nhibiting proliferation and accelerating apoptosis of tumor cells.

Expression Levels of Tetraspanin KAI1/CD82 in Breast Cancers in North Indian Females

  • Singh, Richa;Bhatt, Madan Lal Brahma;Singh, Saurabh Pratap;Kumar, Vijay;Goel, Madhu Mati;Mishra, Durga Prasad;Srivastava, Kirti;Kumar, Rajendra
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권7호
    • /
    • pp.3431-3436
    • /
    • 2016
  • Background: Carcinogenesis is a multifaceted intricate cellular mechanism of transformation of the normal functions of a cell into neoplastic alterations. Metastasis may result in failure of conventional treatment and death Hence, research on metastatic suppressors in cancer is a high priority. The metastatic suppressor gene CD82, also known as KAI1, is a member of the transmembrane 4 superfamily which was first identified in carcinoma of prostate. Little work has been done on this gene in breast cancer. Herein, we aimed to determine the gene and protein level expression of CD82/KAI1 in breast cancer and its role as a prognosticator. Materials and Methods: In this study, 83 histologically proven cases of breast cancer and a similar number of controls were included. Patient age ranged from 18-70 years. Quantitative Real Time Polymerase Chain Reaction (q-RT PCR) and immunohistochemistry (IHC) were used to investigate KAI1 expression at gene and protein levels, respectively. Statistical analysis was done to correlate expression of KAI1 and clinicopathological parameters. Results: It was revealed that: (i) KAI1 was remarkably diminished in metastatic vs non metastatic breast cancer both at the gene and the protein levels (P < .05); (ii) KAI1 expression levels were strongly correlated with TNM staging, histological grade and advanced stage (p<0.001) and no association was found with any other studied parameter; (iii) Lastly, a significant correlation was observed between expression of KAI1 and overall median survival of BC patients (P = 0.04). Conclusions: Our results suggest that lack of expression of the KAI1 might indicate a more aggressive form of breast cancer. Loss of KAI1 may be considered a significant prognostic marker in predicting metastatic manifestation. When evaluated along with the clinical and pathological factors, KAI1 expression may be beneficial to tailor aggressive therapeutic strategies for such patients.

국내 사육 꿩에서 분리된 뉴켓슬병 바이러스의 hemagglutinin-neuraminidase(HN) 유전자의 클론닝과 염기서열 분석 (Molecular cloning and nucleotide sequence of the gene encoding hemagglutinin-neuraminidase(HN) of Newcastle disease virus isolated from a diseased pheasant in Korea)

  • 장경수;곽길한;장승익;김지영;김태용;송영환;송희종;전무형
    • 한국동물위생학회지
    • /
    • 제25권3호
    • /
    • pp.245-257
    • /
    • 2002
  • The gene encoding the HN protein from the CBP-1 strain, a heat stable Newcastle disease virus (NDV) isolated from diseased pheasants in Korea, was characterized by reverse transcriptase- polymerase chain reaction(RT-PCR) and the nucleotide and amino acid sequences were analyzed following cloning of the HN gene. In all of the NDV strains studied, a 1.75 kb size cDNA fragment for the HN gene was generated by RT-PCR and smaller specific band sizes harboring the internal portions of the HN gene were also detected by using four pairs of primers. The RT-PCR was sensitive enough to detect viral transcripts when the virus titer was above 25 hemagglutination units. The amplified 1.75 kb cDNA was cloned into a BamHI site of the pVL1393 Baculo transfer vector. The nucleotide sequences of the 1,758 bp HN gene from the CBP-1 strain were determined by the dye terminator cyclic sequencing method. The gene sequences were compared among the strains of CBP-1, Texas GB, Beaudette C, LaSota, B1 and Ulster. The homology of the CBP-1 HN gene to other HN variants was 97.8% to Texas GB, 98.4% to Beaudette C, 95.4% to LaSota, 95.6% to B1 and 90.2% to Ulster. As the deduced 577 amino acid sequences were compared among the strains, the homology for CBP-1 HN appeared to be 96.7% to Texas GB, 97.9% to Beaudette C, 95.5% to LaSota, 95.5% to B1 and 92.7% to Ulster. It was evident that the amino acid sequences included 5 sites for N-asparagine linked glycosylation and 12 cysteine residues. The three conserved leucine residues within the predicted transmembrane domain of the HN protein are amino acid 30, 37 and 44. The three antigenic sites on the HN protein of NDV are amino acids 347(Glu), 481(Asn) and 495(Glu). These data indicate that the genotype of the CBP-1 strain is more closely associated with the strains of Texas GB and Beaudette C than it is for the LaSota, B1 and Ulster strains.

CRISPR/Cas9-mediated knockout of CD47 causes hemolytic anemia with splenomegaly in C57BL/6 mice

  • Kim, Joo-Il;Park, Jin-Sung;Kwak, Jina;Lim, Hyun-Jin;Ryu, Soo-Kyung;Kwon, Euna;Han, Kang-Min;Nam, Ki-Taek;Lee, Han-Woong;Kang, Byeong-Cheol
    • Laboraroty Animal Research
    • /
    • 제34권4호
    • /
    • pp.302-310
    • /
    • 2018
  • CD47 (integrin-associated protein), a multi-spanning transmembrane protein expressed in all cells including red blood cells (RBCs) and leukocytes, interacts with signal regulatory protein ${\alpha}$ ($SIRP{\alpha}$) on macrophages and thereby inhibits phagocytosis of RBCs. Recently, we generated a novel C57BL/6J CD47 knockout ($CD47^{-/-}$ hereafter) mouse line by employing a CRISPR/Cas9 system at Center for Mouse Models of Human Disease, and here report their hematological phenotypes. On monitoring their birth and development, $CD47^{-/-}$ mice were born viable with a natural male-to-female sex ratio and normally developed from birth through puberty to adulthood without noticeable changes in growth, food/water intake compared to their age and sex-matched wild-type littermates up to 26 weeks. Hematological analysis revealed a mild but significant reduction of RBC counts and hemoglobin in 16 week-old male $CD47^{-/-}$ mice which were aggravated at the age of 26 weeks with increased reticulocyte counts and mean corpuscular volume (MCV), suggesting hemolytic anemia. Interestingly, anemia in female $CD47^{-/-}$ mice became evident at 26 weeks, but splenomegaly was identified in both genders of $CD47^{-/-}$ mice from the age of 16 weeks, consistent with development of hemolytic anemia. Additionally, helper and cytotoxic T cell populations were considerably reduced in the spleen, but not in thymus, of $CD47^{-/-}$ mice, suggesting a crucial role of CD47 in proliferation of T cells. Collectively, these findings indicate that our $CD47^{-/-}$ mice have progressive hemolytic anemia and splenic depletion of mature T cell populations and therefore may be useful as an in vivo model to study the function of CD47.

Production and characterization of lentivirus vector-based SARS-CoV-2 pseudoviruses with dual reporters: Evaluation of anti-SARS-CoV-2 viral effect of Korean Red Ginseng

  • Jeonghui Moon;Younghun Jung;Seokoh Moon;Jaehyeon Hwang;Soomin Kim;Mi Soo Kim;Jeong Hyeon Yoon;Kyeongwon Kim;Youngseo Park;Jae Youl Cho;Dae-Hyuk Kweon
    • Journal of Ginseng Research
    • /
    • 제47권1호
    • /
    • pp.123-132
    • /
    • 2023
  • Background: Pseudotyped virus systems that incorporate viral proteins have been widely employed for the rapid determination of the effectiveness and neutralizing activity of drug and vaccine candidates in biosafety level 2 facilities. We report an efficient method for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus with dual luciferase and fluorescent protein reporters. Moreover, using the established method, we also aimed to investigate whether Korean Red Ginseng (KRG), a valuable Korean herbal medicine, can attenuate infectivity of the pseudotyped virus. Methods: A pseudovirus of SARS-CoV-2 (SARS-2pv) was constructed and efficiently produced using lentivirus vector systems available in the public domain by the introduction of critical mutations in the cytoplasmic tail of the spike protein. KRG extract was dose-dependently treated to Calu-3 cells during SARS2-pv treatment to evaluate the protective activity against SARS-CoV-2. Results: The use of Calu-3 cells or the expression of angiotensin-converting enzyme 2 (ACE2) in HEK293T cells enabled SARS-2pv infection of host cells. Coexpression of transmembrane protease serine subtype 2 (TMPRSS2), which is the activator of spike protein, with ACE2 dramatically elevated luciferase activity, confirming the importance of the TMPRSS2-mediated pathway during SARS-CoV-2 entry. Our pseudovirus assay also revealed that KRG elicited resistance to SARS-CoV-2 infection in lung cells, suggesting its beneficial health effect. Conclusion: The method demonstrated the production of SARS-2pv for the analysis of vaccine or drug candidates. When KRG was assessed by the method, it protected host cells from coronavirus infection. Further studies will be followed for demonstrating this potential benefit.