• Title/Summary/Keyword: translational turn

Search Result 8, Processing Time 0.021 seconds

Dynamic behaviour of semi-rigid jointed cold-formed steel hollow frames

  • Joanna, P.S.;Samuel Knight, G.M.;Rajaraman, A.
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.513-529
    • /
    • 2006
  • This paper deals with the dynamic behaviour of cold-formed steel hollow frames with different connection stiffnesses. An analytical model of a semi-rigid frame was developed to study the influence of connection stiffnesses on the fundamental frequency and dynamic response of the frames. The flexibilities of the connections are modeled by rotational springs. Neglect of semi-rigidity leads to an artificial stiffening of frames resulting in shorter fundamental period, which in turn results in a significant error in the evaluation of dynamic loads. In the seismic design of structures, of all the principal modes, the fundamental mode of translational vibration is the most critical. Hence, experiments were conducted to study the influence of the connection stiffnesses on the fundamental mode of translational vibration of the steel hollow frames. From the experimental study it was found that the fundamental frequency of the frames lie in the semi-rigid region. From the theoretical investigation it was found that the flexibly connected frames subjected to lateral loads exhibit larger deflection as compared to rigidly connected frames.

Scale, Untranslatability, Cultural Translation, and World Literature

  • Kim, Youngmin
    • Journal of English Language & Literature
    • /
    • v.64 no.3
    • /
    • pp.469-481
    • /
    • 2018
  • When literatures and cultures encounter their counterparts in terms of the big data or statistics of a new reconfiguration in the cognitive map, the tangential points of the borderland will be reduced to what Mitchell calls "a mere abstraction on a map," which nevertheless will provide a vast interstitial zone of "intersections, competition, and exclusions." This zone will be the dynamic vortex for the aesthetics, politics, and ethics of cultural translation. The translated discourse will engage in carrying across the disturbing region of untranslatability and demonstrate how the literary texts of world literature reveal enriching but threatening human experience. This dynamic border of vortex will construct the translational space of world literature, transcending the fragmentary untranslatable nature of the hybrid convergence of the ethnic, racial, cultural and national intermixtures and constructing what Pascal Casanova terms "The World Republic of Letters." In this paper, I will demonstrate how the very concept of scale is related to literary space as well as how distance creates a poetics of literary landscapes which looks ahead of world literature. Also, I will attempt to find the possibility to relate the "micro-scale" with the "macro-scale," and to construct the scale politics of representation. "Glocalization" is a convenient theoretical tool for the double movement of the up-scale and down-scale.

A Corpus-based Study of Translation Universals in English Translations of Korean Newspaper Texts (한국 신문의 영어 번역에 나타난 번역 보편소의 코퍼스 기반 분석)

  • Goh, Gwang-Yoon;Lee, Younghee (Cheri)
    • Cross-Cultural Studies
    • /
    • v.45
    • /
    • pp.109-143
    • /
    • 2016
  • This article examines distinctive linguistic shifts of translational English in an effort to verify the validity of the translation universals hypotheses, including simplification, explicitation, normalization and leveling-out, which have been most heavily explored to date. A large-scale study involving comparable corpora of translated and non-translated English newspaper texts has been carried out to typify particular linguistic attributes inherent in translated texts. The main findings are as follows. First, by employing the parameters of STTR, top-to-bottom frequency words, and mean values of sentence lengths, the translational instances of simplification have been detected across the translated English newspaper corpora. In contrast, the portion of function words produced contrary results, which in turn suggests that this feature might not constitute an effective test of the hypothesis. Second, it was found that the use of connectives was more salient in original English newspaper texts than translated English texts, being incompatible with the explicitation hypothesis. Third, as an indicator of translational normalization, lexical bundles were found to be more pervasive in translated texts than in non-translated texts, which is expected from and therefore support the normalization hypothesis. Finally, the standard deviations of both STTR and mean sentence lengths turned out to be higher in translated texts, indicating that the translated English newspaper texts were less leveled out within the same corpus group, which is opposed to what the leveling-out hypothesis postulates. Overall, the results suggest that not all four hypotheses may qualify for the label translation universals, or at least that some translational predictors are not feasible enough to evaluate the effectiveness of the translation universals hypotheses.

Ablation of Arg-tRNA-protein transferases results in defective neural tube development

  • Kim, Eunkyoung;Kim, Seonmu;Lee, Jung Hoon;Kwon, Yong Tae;Lee, Min Jae
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.443-448
    • /
    • 2016
  • The arginylation branch of the N-end rule pathway is a ubiquitin-mediated proteolytic system in which post-translational conjugation of Arg by ATE1-encoded Arg-tRNA-protein transferase to N-terminal Asp, Glu, or oxidized Cys residues generates essential degradation signals. Here, we characterized the ATE1−/− mice and identified the essential role of N-terminal arginylation in neural tube development. ATE1-null mice showed severe intracerebral hemorrhages and cystic space near the neural tubes. Expression of ATE1 was prominent in the developing brain and spinal cord, and this pattern overlapped with the migration path of neural stem cells. The ATE1−/− brain showed defective G-protein signaling. Finally, we observed reduced mitosis in ATE1−/− neuroepithelium and a significantly higher nitric oxide concentration in the ATE1−/− brain. Our results strongly suggest that the crucial role of ATE1 in neural tube development is directly related to proper turn-over of the RGS4 protein, which participate in the oxygen-sensing mechanism in the cells.

Intramolecular Energy Flow and Bond Dissociation in the Collision between Vibrationally Excited Toluene and HF

  • Ree, Jong-baik;Kim, Sung-Hee;Lee, Taeck-Hong;Kim, Yu-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.495-502
    • /
    • 2006
  • Intramolecular energy flow and C-$H_{methyl}$ and C-$H_{ring}$ bond dissociations in vibrationally excited toluene in the collision with HF have been studied by use of classical trajectory procedures. The energy lost by the vibrationally excited toluene upon collision is not large and it increases slowly with increasing total vibrational energy content between 20,000 and 45,000 $cm ^{-1}$. Above the energy content of 45,000 $cm ^{-1}$, however, energy loss decreases. Furthermore, in the highly excited toluene, toluene gains energy from incident HF. The temperature dependence of energy loss is negligible between 200 and 400 K. Energy transfer to or from the excited methyl C-H bond occurs in strong collisions with HF transferring relatively large amount of its translational energy (>> $k_BT$) in a single step, whereas energy transfer to the ring C-H bond occurs in a series of small steps. When the total energy content $E_T$ of toluene is sufficiently high, either C-H bond can dissociate. The C-$H_{methyl}$ dissociation probability is higher than the C-$H_{ring}$ dissociation probability. The dissociation of the ring C-H bond is not the result of the intermolecular energy flow from the direct collision between the ring C-H and HF but the intramolecular flow of energy from the methyl group to the ring C-H stretch. The C-$H_{ring}$${\cdot}{\cdot}{\cdot}$HF interaction is not important in transferring energy and in turn bond dissociation.

Modification of ERα by UFM1 Increases Its Stability and Transactivity for Breast Cancer Development

  • Yoo, Hee Min;Park, Jong Ho;Kim, Jae Yeon;Chung, Chin Ha
    • Molecules and Cells
    • /
    • v.45 no.6
    • /
    • pp.425-434
    • /
    • 2022
  • The post-translational modification (e.g., phosphorylation) of estrogen receptor α (ERα) plays a role in controlling the expression and subcellular localization of ERα as well as its sensitivity to hormone response. Here, we show that ERα is also modified by UFM1 and this modification (ufmylation) plays a crucial role in promoting the stability and transactivity of ERα, which in turn promotes breast cancer development. The elevation of ufmylation via the knockdown of UFSP2 (the UFM1-deconjugating enzyme in humans) dramatically increases ERα stability by inhibiting ubiquitination. In contrast, ERα stability is decreased by the prevention of ufmylation via the silencing of UBA5 (the UFM1-activating E1 enzyme). Lys171 and Lys180 of ERα were identified as the major UFM1 acceptor sites, and the replacement of both Lys residues by Arg (2KR mutation) markedly reduced ERα stability. Moreover, the 2KR mutation abrogated the 17β-estradiol-induced transactivity of ERα and the expression of its downstream target genes, including pS2, cyclin D1, and c-Myc; this indicates that ERα ufmylation is required for its transactivation function. In addition, the 2KR mutation prevented anchorage-independent colony formation by MCF7 cells. Most notably, the expression of UFM1 and its conjugating machinery (i.e., UBA5, UFC1, UFL1, and UFBP1) were dramatically upregulated in ERα-positive breast cancer cell lines and tissues. Collectively, these findings implicate a critical role attributed to ERα ufmylation in breast cancer development by ameliorating its stability and transactivity.

Purification and Identification of Apoptosis Modulator Pipernonaline from Piper longum Linn. against Prostate Cancer Cells (필발(Piper longum Linn.)로부터 전립선암 세포사멸물질 pipernonaline의 분리 및 동정)

  • Kim, Kwang-Youn;Kim, Yun-Jin;Lee, Wan;Yu, Sun-Nyoung;Cho, Hyo-Jin;Lee, Sun-Yi;Lee, Han-Seung;Sohn, Jae-Hak;Oh, Hyuncheol;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.671-675
    • /
    • 2009
  • Prostate cancer has been a critical health problem due to an increase of prostate cancer-related deaths worldwide. Also, a frequent treatment option for prostate cancer is androgen ablation, but this treatment has a limited scope, especially for hormone-refractory cancer. There is an urgent need for the identification of alternative therapeutic strategies for prostate cancer. Previously, over one hundred species of dried-plant methanol extracts were tested for inhibitory effects on proliferation. One of them, Piper longum Linn. was selected based on its potent anti-proliferation effect. The dried root of P. longum Linn. was extracted with 100% methanol for 2-3 days and its extract was fractionated using chloroform. The chloroform layer was then subjected to column chromatography on silica gel, reverse phase-18 (RP-18) and Sephadex LH-20, in turn. Finally, the pure compound was obtained and identified as pipernonaline by NMR spectroscopic and physico-chemical analysis. In this study, anti-proliferation and cell cycle arrest effects of pipernonaline on human prostate cancer PC-3 cells were investigated using the MTT and PI staining, respectively. Our findings suggest that pipernonaline represents a dose-dependent growth inhibition pattern on PC-3 cells and, moreover, its growth inhibition is associated with sub-G1 and G0/G1 cell cycle accumulation in PC-3 cells. Also, these results provide an anticancer candidate for human prostate cancer.

Calpain Protease-dependent Post-translational Regulation of Cyclin D3 (Calpain protease에 의한 cyclin D3의 post-translation조절)

  • Hwang, Won Deok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Cyclin D is a member of the cyclin protein family, which plays a critical role as a core member of the mammalian cell cycle machinery. D-type cyclins (D1, D2, and D3) bind to and activate the cyclin-dependent kinases 4 and 6, which can then phosphorylate the retinoblastoma tumor suppressor gene products. This phosphorylation in turn leads to release or derepression of E2F transcription factors that promote progression from the G1 to S phase of the cell cycle. Among the D-type cyclins, cyclin D3 encoded by the CCND3 gene is one of the least well studied. In the present study, we have investigated the biochemistry of the proteolytic mechanism that leads to loss of cyclin D3 protein. Treatment of human prostate carcinoma PC-3-M cells with lovastatin and actinomycin D resulted in a loss of cyclin D3 protein that was completely reversible by the peptide aldehyde calpain inhibitor, LLnL. Additionally, using inhibitors for various proteolytic systems, we show that degradation of cyclin D3 protein involves the $Ca^{2+}$-activated neutral protease calpain. Moreover, the half-life of cyclin D3 protein half-life increased by at least 10-fold in PC-3M cells in response to the calpain inhibitor. We have also demonstrated that the transient expression of the calpain inhibitor calpastatin increased cyclin D3 protein in serum-starved NIH 3T3 cells. These data suggested that the function of cyclin D3 is regulated by $Ca^{2+}$-dependent protease calpain.