• Title/Summary/Keyword: transitional milk

Search Result 23, Processing Time 0.016 seconds

A Pilot Study Exploring Temporal Development of Gut Microbiome/Metabolome in Breastfed Neonates during the First Week of Life

  • Imad Awan;Emily Schultz;John D. Sterrett;Lamya'a M. Dawud;Lyanna R. Kessler;Deborah Schoch;Christopher A. Lowry;Lori Feldman-Winter;Sangita Phadtare
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.26 no.2
    • /
    • pp.99-115
    • /
    • 2023
  • Purpose: Exclusive breastfeeding promotes gut microbial compositions associated with lower rates of metabolic and autoimmune diseases. Its cessation is implicated in increased microbiome-metabolome discordance, suggesting a vulnerability to dietary changes. Formula supplementation is common within our low-income, ethnic-minority community. We studied exclusively breastfed (EBF) neonates' early microbiome-metabolome coupling in efforts to build foundational knowledge needed to target this inequality. Methods: Maternal surveys and stool samples from seven EBF neonates at first transitional stool (0-24 hours), discharge (30-48 hours), and at first appointment (days 3-5) were collected. Survey included demographics, feeding method, medications, medical history and tobacco and alcohol use. Stool samples were processed for 16S rRNA gene sequencing and lipid analysis by gas chromatography-mass spectrometry. Alpha and beta diversity analyses and Procrustes randomization for associations were carried out. Results: Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the most abundant taxa. Variation in microbiome composition was greater between individuals than within (p=0.001). Palmitic, oleic, stearic, and linoleic acids were the most abundant lipids. Variation in lipid composition was greater between individuals than within (p=0.040). Multivariate composition of the metabolome, but not microbiome, correlated with time (p=0.030). Total lipids, saturated lipids, and unsaturated lipids concentrations increased over time (p=0.012, p=0.008, p=0.023). Alpha diversity did not correlate with time (p=0.403). Microbiome composition was not associated with each samples' metabolome (p=0.450). Conclusion: Neonate gut microbiomes were unique to each neonate; respective metabolome profiles demonstrated generalizable temporal developments. The overall variability suggests potential interplay between influences including maternal breastmilk composition, amount consumed and living environment.

Studies of nutrient composition of transitional human milk and estimated intake of nutrients by breast-fed infants in Korean mothers (한국인 수유부의 수유초기 이행유의 모유성분 분석과 영아의 섭취량 추정 연구)

  • Choi, Yun Kyung;Kim, Nayoung;Kim, Ji-Myung;Cho, Mi Sook;Kang, Bong Soo;Kim, Yuri
    • Journal of Nutrition and Health
    • /
    • v.48 no.6
    • /
    • pp.476-487
    • /
    • 2015
  • Purpose: This study was conducted to examine the concentration of nutrients in transitional breast milk from Korean lactating mothers and to evaluate daily intakes of their infants based on the Dietary Reference Intakes for Koreans 2010 (KDRIs 2010). Methods: Breast milk samples were collected at 5~15 days postpartum from 100 healthy lactating Korean mothers. Macro- and micro-nutrients, and immunoglobulin (Igs) concentrations in breast milk were analyzed. Results: The mean energy, protein, fat, and carbohydrate concentrations in breast milk were $59.99{\pm}8.01kcal/dL$, $1.47{\pm}0.27g/dL$, $2.88{\pm}0.89g/dL$, and $6.72{\pm}0.22g/dL$. The mean linoleic acid (LA), a-linolenic acid (ALA), arachidonic acid (AA), and docosahexaenoic acid (DHA) concentrations were $181.44{\pm}96.41mg/dL$, $28.15{\pm}8.89mg/dL$, $5.67{\pm}1.86mg/dL$, and $5.74{\pm}2.57mg/dL$. The mean vitamin A, vitamin D, vitamin E, vitamin $B_1$, vitamin $B_2$, vitamin $B_{12}$, and folate concentrations were $2.75{\pm}1.75{\mu}g/dL$, $2.31{\pm}1.12ng/dL$, $0.74{\pm}1.54mg/dL$, $3.02{\pm}1.84mg/dL$, $7.51{\pm}20.96{\mu}g/dL$, $61.78{\pm}26.78{\mu}g/dL$, $63.71{\pm}27.19ng/dL$, and $0.52{\pm}0.26{\mu}g/dL$. The mean concentrations of calcium, iron, potassium, sodium, zinc, and copper were $20.71{\pm}3.34mg/dL$, $0.59{\pm}0.86mg/dL$, $66.71{\pm}10.35mg/dL$, $27.72{\pm}10.16mg/dL$, $0.44{\pm}0.41mg/dL$, and $70.48{\pm}30.41{\mu}g/dL$. The mean IgA and total IgE concentrations were $61.85{\pm}31.97mg/dL$ and $235.00{\pm}93.00IU/dL$. The estimated daily intakes of infants for protein, vitamin D, vitamin E, vitamin $B_2$, vitamin $B_{12}$, iron, potassium, sodium, zinc, and copper were sufficient compared to KDRIs 2010 adjusted by transitory milk intakes. The estimated infants' intakes of energy, fat, carbohydrate, vitamin A, vitamin C, vitamin $B_1$, folate, and calcium did not meet KDRIs 2010 adjusted by transitory milk intakes. Conclusion: In general most estimated nutrient intakes of Korean breast-fed infants in transitory breast milk were sufficient, however some nutrient intakes were not sufficient based on KDRIs 2010. These results warrant conduct of future studies for investigation of important dietary factors associated with nutrients in breast milk to improve the quality of breast milk, which may contribute to understanding nutrition in early life and promoting growth and development of breast-fed infants.

Effect of Prepartum and Postpartum Feeding System on Postpartum Productivity of Dairy Cows (분만 전·후 사료급여 형태가 젖소의 생산성에 미치는 영향)

  • Ki, Kwang-Seok;Kim, Hyeon-Shup;Lee, Wang-Shik;Lee, Hyun-June;Kim, Sang-Bum;Jeong, Ha-Yeon;Eun, Jeong-Shik;Kim, Yong-Kook
    • Korean Journal of Agricultural Science
    • /
    • v.34 no.2
    • /
    • pp.151-159
    • /
    • 2007
  • This experiment was carried out to protect drops of feed intake should be plural prepartum and postpartum to reduce metabolic diseases after calving to know how feeding systems, which is divided as a low quility, a high quility and total mixed rations(TMR), affects on postpartum productivity of Holistein cows. Three diets (low or high quality forage separately fed with concentrate and TMR containing high quality roughage) were fed to 21 cows from 3 weeks prepartum to 8 weeks postpartum to examine their effects on the productivity of cows. DM intakes was noticed significantly higher with TMR (17.11kg/day) than low-quality (13.48 kg/day) and high-quality forage (13.10kg/day). TDN and CP intakes were also higher with TMR compared to other experimental diets. Mean daily milk yield was non-significant among the cows fed different diets. Blood non-esterified fatty acids(NEFA) content was higher in cows fed low-quality or high-quality forage separately with concentrate compared with those fed TMR. The results concluded that TMR feeding to transitional cows is better than feeding the low or high quality forage separately for their health and productivity.

  • PDF