• Title/Summary/Keyword: transition-metal dichalcogenide

Search Result 23, Processing Time 0.027 seconds

Phase Transformation of Two-Dimensional Transition Metal Dichalcogenides

  • Kim, Jaemin;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.48 no.2
    • /
    • pp.43-48
    • /
    • 2018
  • Transition metal dichalcogenide (TMD) materials have distinctive structures in comparison with other two-dimensional materials. TMD materials' structure is held together by van der Waals and covalent intralayer interactions; consequently, TMDs exhibit multiple phases and properties depending on their structure. This article reviews some of the research currently being undertaken to control TMD phases to utilize their different properties. This review introduces some trials for changing the phase of TMDs.

2D transition-metal dichalcogenide (WSe2) doping methods for hydrochloric acid

  • Nam, Hyo-Jik;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.291.2-291.2
    • /
    • 2016
  • 3D semiconductor material of silicon that is used throughout the semiconductor industry currently faces a physical limitation of the development of semiconductor process technology. The research into the next generation of nano-semiconductor materials such as semiconductor properties superior to replace silicon in order to overcome the physical limitations, such as the 2-dimensional graphene material in 2D transition-metal dichalcogenide (TMD) has been researched. In particular, 2D TMD doping without severely damage of crystal structure is required different conventional methods such as ion implantation in 3D semiconductor device. Here, we study a p-type doping technique on tungsten diselenide (WSe2) for p-channel 2D transistors by adjusting the concentration of hydrochloric acid through Raman spectroscopy and electrical/optical measurements. Where the performance parameters of WSe2 - based electronic device can be properly designed or optimized. (on currents increasing and threshold voltage positive shift.) We expect that our p-doping method will make it possible to successfully integrate future layered semiconductor devices.

  • PDF

Semi-analytical Modeling of Transition Metal Dichalcogenide (TMD)-based Tunneling Field-effect Transistors (TFETs)

  • Huh, In
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.368-372
    • /
    • 2016
  • In this paper, the physics-based analytical model of transition metal dichalcogenide (TMD)-based double-gate (DG) tunneling field-effect transistors (TFETs) is proposed. The proposed model is derived by using the two-dimensional (2-D) Landauer formula and the Wentzel-Kramers-Brillouin (WKB) approximation. For improving the accuracy, nonlinear and continuous lateral energy band profile is applied to the model. 2-D density of states (DOS) and two-band effective Hamiltonian for TMD materials are also used in order to consider the 2-D nature of TMD-based TFETs. The model is validated by using the tight-binding non-equilibrium Green's function (NEGF)-based quantum transport simulation in the case of monolayer molybdenum disulfide ($MoS_2$)-based TFETs.

  • PDF

Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting (전이금속 디칼코제나이드 나노촉매를 이용한 태양광 흡수 광화학적 물분해 연구)

  • Yoo, Jisun;Cha, Eunhee;Park, Jeunghee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.25-38
    • /
    • 2020
  • Photoelectrochemical water splitting has been considered as the most promising technology for generating hydrogen energy. Transition metal dichalcogenide (TMD) compounds have currently attracted tremendous attention due to their outstanding ability towards the catalytic water-splitting hydrogen evolution reaction (HER). Herein, we report the synthesis method of various transition metal dichalcogenide including MoS2, MoSe2, WS2, and WSe2 nanosheets as excellent catalysts for solar-driven photoelectrochemical (PEC) hydrogen evolution. Photocathodes were fabricated by growing the nanosheets directly onto Si nanowire (NW) arrays, with a thickness of 20 nm. The metal ion layers were formed by soaking the metal chloride ethanol solution and subsequent sulfurization or selenization produced the transition metal chalcogenide. They all exhibit excellent PEC performance in 0.5 M H2SO4; the photocurrent reaches to 20 mA cm-2 (at 0 V vs. RHE) and the onset potential is 0.2 V under AM1.5 condition. The quantum efficiency of hydrogen generation is avg. 90%. The stability of MoS2 and MoSe2 is 90% for 3h, which is higher than that (80%) of WS2 and WSe2. Detailed structure analysis using X-ray photoelectron spectroscopy for before/after HER reveals that the Si-WS2 and Si-WSe2 experience more oxidation of Si NWs than Si-MoS2 and Si-MoSe2. This can be explained by the less protection of Si NW surface by their flake shape morphology. The high catalytic activity of TMDs should be the main cause of this enhanced PEC performance, promising efficient water-splitting Si-based PEC cells.

Transparent Photovoltaic Device using Two-dimensional Transition-metal Dichalcogenides (이차원 반도체 소재를 이용한 투명 태양전지 특성에 관한 연구)

  • Jwa, Tae-Hun;Hyun, Chul-Min;Kim, Min-Sik;Lee, Hyeok-ju;Ahn, Ji-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.186-190
    • /
    • 2016
  • In this study, we fabricated the transparent photovoltaic device using 2-dimensional transition-metal dichalcogenides and investigated the transparency and photovoltaic characteristics. P-n heterojunction was formed by mechanical exfoliation and aligned transfer method on the transparent sheet using n-type $MoS_2$ and p-type $WSe_2$. Our transparent photovoltaic device exhibited the open-circuit voltage of ~ 0.15 V and the short-circuit current of 0.48 nA under illumination of white light.

High-performance WSe2 field-effect transistors fabricated by hot pick-up transfer technique (핫픽업 전사기술을 이용한 고성능 WSe2 기반 전계효과 트랜지스터의 제작)

  • Kim, Hyun Ho
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.107-112
    • /
    • 2020
  • Recently, the atomically thin transition-metal dichalcogenide (TMD) semiconductors have attracted much attention owing to their remarkable properties such as tunable bandgap with high carrier mobility, flexibility, transparency, etc. However, because these TMD materials have a significant drawback that they are easily degraded in an ambient environment, various attempts have been made to improve chemical stability. In this research article, I report a method to improve the air stability of WSe2 one of the TMD materials via surface passivation with an h-BN insulator, and its application to field-effect transistors (FETs). With a modified hot pick-up transfer technique, a vertical heterostructure of h-BN/WSe2 was successfully made, and then the structure was used to fabricate the top-gate bottom-contact FETs. The fabricated WSe2-based FET exhibited not only excellent air stability, but also high hole mobility of 150 ㎠/Vs at room temperature, on/off current ratios up to 3×106, and 192 mV/decade of subthreshold swing.

Investigation on 2D Transition Metal Chalcogenide Using Angular-Resolved Photoelectron Spectroscopy (각도분해 광전자 분광법을 이용한 2차원 전이금속 칼코겐 화합물의 전자구조 연구)

  • Park, Soohyung
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.350-356
    • /
    • 2019
  • Recently, transition metal dichalcogenide (TMDC) monolayers have been the subject of research exploring the physical phenomenon generated by low dimensionality and high symmetry. One of the keys to understanding new physical observations is the electronic band structure of 2D TMDCs. Angle-resolved photoelectron spectroscopy (ARPES) is, to this point, the best technique for obtaining information on the electronic structure of 2D TMDCs. However, through ARPES research, obtaining the long-range well-ordered single crystal samples always proves a challenging and obstacle presenting issue, which has been limiting towards measuring the electronic band structures of samples. This is particularly true in general 2D TMDCs cases. Here, we introduce the approach, with a mathematical framework, to overcome such ARPES limitations by employing the high level of symmetry of 2D TMDCs. Their high symmetry enables measurement of the clear and sharp electronic band dispersion, which is dominated by the band dispersion of single-crystal TMDCs along the two high symmetry directions Γ-K and Γ-M. In addition, we present two important studies and observations for the direct measuring of the exciton binding energy and charge transfer of 2D TMDCs, both being established by the above novel approach.

CVD 및 PVD를 이용한 2차원 TMDC 성장연구

  • Jeong, Jong-Wan;Hussain, Sajjad;Kim, Hyeji
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.115.2-115.2
    • /
    • 2014
  • 2004년에 최초의 2D 물질인 그래핀이 발표된 이후로 그래핀에 대한 관심이 매우 높다. 그래핀은 매우 높은 캐리어 이동도와 높은 광학 투과도, 높은 기계적 강도, 뛰어난 유연성등 다양하고, 뛰어난 물리적, 광학적, 기계적 성질을 갖고 있다. 이러한 뛰어난 성질로 인해 초고속 전자소자, 유연소자, 투명전극, 광학소자등 다양한 분야의 응용이 기대되어, 현재 물리학, 화학, 재료등 여러분야에서 활발히 연구가 진행되고 있다. 이러한 활발한 연구에도 불구하고 그래핀이 가진 기본적인 물리적 특성인 "제로 밴드갭" 특성으로 인해 낮은 소모전력이 요구되는 전자소자와 또한 광학소자로서의 응용에 한계를 보이고 있는 것이 사실이다. 그래핀의 기본적인 물리적 성질인 "제로 밴드갭"에서 탈출해 밴드갭을 증가하기 위해 나노리본, 바이레이어 그래핀등, 다양한 연구가 진행되고 있다. 하지만, 이를 통한 밴드갭의 증가량은 충분히 크지않아서 그래핀의 전자 및 광학적 응용이 아직까지는 매우 어렵다. 이러한 그래핀의 물질적 한계에 비추어 최근에 그래핀과 달리 충분한 밴드갭이 있어 반도체 특성을 가지는 Transition Metal DichalCogenide (TMDC) 물질에 대한 관심이 매우 높다. TMDC물질은 그래핀과 같이 2차원 물질로서 극히 얇으며, 또한 밴드갭을 가지고 있다. 따라서 실리콘과 같이 전자소자, 광학소자의 응용이 더욱 현실적으로 가능하다. 가장 대표적인 물질은 MoS2, WS2등을 들수 있다. TMDC 물질의 연구에서 가장 기본적으로 선행되어야할 연구분야는 바로 물질 성장에 있으며, 본 연구에서는 가장 대표적인 성장방법인 화학기상증착(CVD), 스퍼터링-물리적기상증착 (PVD)를 이용한 MoS2, WS2등의 TMDC의 성장연구에 대해 논의하고자 한다.

  • PDF

Synthesis and Electrochemical Properties of FexNbS2/C Composites as an Anode Material for Li Secondary Batteries

  • Kim, Yunjung;Kim, Jae-Hun
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.250-257
    • /
    • 2022
  • Transition metal sulfide materials have emerged as a new anode material for Li secondary batteries owing to their high capacity and rate capability facilitated by fast Li-ion transport through the layered structure. Among these materials, niobium disulfide (NbS2) has attracted much attention with its high electrical conductivity and high theoretical capacity (683 mAh g-1). In this study, we propose a facile synthesis of FexNbS2/C composite via simple ball milling and heat treatment. The starting materials of FeS and Nb were reacted in the first milling step and transformed into an Fe-Nb-S composite. In the second milling step, activated carbon was incorporated and the sulfide was crystallized into FexNbS2 by heat treatment. The prepared materials were characterized by X-ray diffraction, electron spectroscopies, and X-ray photoelectron spectroscopy. The electrochemical test results reveal that the synthesized FexNbS2/C composite electrode demonstrates a high reversible capacity of more than 600 mAh g-1, stable cycling stability, and excellent rate performance for Li-ion battery anodes.

Research Trends of Two Dimensional Transition Metal Dichalcogenide Semiconductor Materials and Devices (이차원 전이금속 칼코겐화합물 반도체 소재 및 소자 기술개발 동향)

  • Yun, S.J.;Lim, J.W.;Cho, D.H.;Chung, Y.D.
    • Electronics and Telecommunications Trends
    • /
    • v.29 no.6
    • /
    • pp.43-52
    • /
    • 2014
  • 수 원자층 두께의 전이금속 칼코겐화물 이차원 반도체 소재는 스위칭 소자 등에 활용하기에 적합한 밴드갭 에너지를 가지며, 높은 이동도와 우수한 광반응성으로 인해 최근 큰 관심을 끌고 있다. 특히 이차원 소재이므로 dangling bond가 없다는 점, 구조적 안정성, 실리콘에 뒤지지 않는 고이동도, 직접천이 특성 등으로 인해 차세대 전자소자용, 더 나아가 실리콘 반도체 대체 소재로써의 가능성도 점쳐지고 있다. 본고에서는 전이금속 칼코겐화물 이차원 반도체의 소재 특성과 제조방법, 소자 응용면에서의 기술개발 동향, 시장전망 등에 대해 소개하고, 이 소재가 현재 기대하는 만큼 중요하게 활용되고 기술이 발전하기 위해서 반드시 해결해야 할 숙제 등에 대해 논의하고자 한다.

  • PDF