• Title/Summary/Keyword: transition temperature

Search Result 2,879, Processing Time 0.031 seconds

Effects of Oxidation on the Order-disorder Transition in NiPt Alloy Nano Crystals

  • Seo, Ok-Gyun;Hwang, Jae-Seong;Song, Da-Hyeon;Lee, Ji-Yeon;Choe, Jeong-Won;Lee, Su-Ung;Gang, Hyeon-Cheol;No, Do-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.253-253
    • /
    • 2012
  • The effects of oxidation on the order-disorder transition in NiPt bimetallic alloy crystal have been investigated using in-situ synchrotron x-ray scattering technique. The temperature dependence of the crystal structure and the order parameter were measured during in-situ heating and cooling under vacuum and oxygen environments. The order-disorder transition temperature of NiPt alloy crystals in vacuum was between $615^{\circ}C$ and $627^{\circ}C$. On the other hand under oxygen environment, the transition temperature decreases by about $31^{\circ}C$ after the oxidation. The change of the transition temperature can be explained by the formation of NiO crust on the surface of NiPt crystal, which alters the composition of the Ni and Pt atoms. Since the transition temperature depends sensitively on the Ni-Pt composition, the transition temperature changes as Ni atoms diffuse out to form NiO.

  • PDF

40 GHz Vertical Transition with a Dual-Mode Cavity for a Low-Temperature Co-fired Ceramic Transceiver Module

  • Byun, Woo-Jin;Kim, Bong-Su;Kim, Kwang-Seon;Eun, Ki-Chan;Song, Myung-Sun;Kulke, Reinhard;Kersten, Olaf;Mollenbeck, Gregor;Rittweger, Matthias
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.195-203
    • /
    • 2010
  • A new vertical transition between a substrate integrated waveguide in a low-temperature co-fired ceramic substrate and an air-filled standard waveguide is proposed in this paper. A rectangular cavity resonator with closely spaced metallic vias is designed to connect the substrate integrated waveguide to the standard air-filled waveguide. Physical characteristics of an air-filled WR-22 to WR-22 transition are compared with those of the proposed transition. Simulation and experiment demonstrate that the proposed transition shows a -1.3 dB insertion loss and 6.2 GHz bandwidth with a 10 dB return loss for the back-to-back module. A 40 GHz low-temperature co-fired ceramic module with the proposed vertical transition is also implemented. The implemented module is very compact, measuring 57 mm ${\times}$ 28 mm ${\times}$ 3.3 mm.

Factors Affecting the Magnitude of the Metal-Insulator Transition Temperature in AMo4O6 (A=K, Sn)

  • Jung, Dong-Woon;Choi, Kwang-Sik;Kim, Sung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.959-964
    • /
    • 2004
  • A low-dimensional metal frequently exhibits a metal-insulator transition through a charge-density-wave (CDW) or a spin-density-wave (SDW) which accompany it's structural changes. The transition temperature is thought to be determined by the amount of energy produced during the transition process and the softness of the original structure. $AMo_4O_6$ (A=K, Sn) are known to be quasi-one dimensional metals which exhibit metalinsulator transitions. The difference of the transition temperatures between $KMo_4O_6$ and $SnMo_4O_6$ (A=K, Sn) is examined by investigating their electronic and structural properties. Fermi surface nesting area and the lattice softness are the governing factors to determine the metal-insulator transition temperature in $AMo_4O_6$ compounds.

Mechanical Property and Ductile-Brittle Transition Behavior of Ti-Nb-P Added Extra Low Carbon High Strength Steel Sheets (Ti-Nb-P 첨가 극저탄소 고강도 강판의 기계적 성질과 연성-취 천이거동)

  • Park J. J.;Lee O. Y.;Park Y. K.;Han S. H.;Chin K. G.
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.863-869
    • /
    • 2004
  • The purpose of this research is to investigate the mechanical property and ductile-brittle transition temperature of Ti-Nb-P added extra low carbon interstitial free steel having a tensile strength of 440 MPa. The mechanical property and transition temperature of hot rolled steel sheets were more influenced by the coiling temperature rather than by the small amount of alloying element. Further, at the same composition, the property of the specimen coiled at low temperature was superior to that obtained at higher coiling temperature. The fracture surface of 0.005C-0.2Si-1.43Mn steel coiled at $630^{\circ}C$ showed a ductile fracture mode at $-100^{\circ}C$, but coiling at $670^{\circ}C$ showed a transgranular brittle fracture mode at $-90^{\circ}C$. The galvannealed 0.006C-0.07Si-1.33Mn steel sheet annealed at $810^{\circ}C$ has tensile strength and elongation of 442.8 MPa and $36.6\%$, respectively. The transition temperature of galvannealed 0.006C-0.07Si-1.33Mn steel sheet was increased with a drawing ratio, and the transition temperature of the galvannealed 0.006C-0.07Si-1.33Mn steel was $-60^{\circ}C$ at a drawing ratio of 1.8

Temperature Dependence of Nanoscale Friction and Conductivity on Vanadium Dioxide Thin Film During Metal-Insulator Transition

  • Kim, Jong Hun;Fu, Deyi;Kwon, Sangku;Wu, Junqiao;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.143.2-143.2
    • /
    • 2013
  • Nanomechanical and electrical properties of vanadium dioxide (VO2) thin films across thermal-driven phase transition are investigated with ultra-high vacuum atomic force microscopy. VO2 thin films have been deposited on the n-type heavily doped silicon wafer by pulsed laser deposition. X-ray diffraction reveals that it is textured polycrystalline with preferential orientation of (100) and (120) planes in monoclinic phase. As the temperature increases, the friction decreased at the temperature below the transition temperature, and then the friction increased as increasing temperature above the transition temperature. We attribute this observation to the combined effect of the thermal lubricity and electronic contribution in friction. Furthermore, the dependence of nanoscale conductance on the local pressure was indicated at the various temperatures, and the result was discussed in the view of pressure-induced metal-insulator transition.

  • PDF

The Physical Properties of Thermotropic Side-Chain Triblock Copolymers of n-Butyl Acrylate and a Comonomer with Azobenzene Group

  • Dan, Kyung-Sik;Kim, Byoung-Chul;Han, Yang-Kyoo
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.313-318
    • /
    • 2009
  • The side chain liquid crystal triblock copolymers (TBCs), which underwent phase transitions below their decomposition temperature, were prepared by copolymerization of poly(n-butyl acrylate) and a comonomer containing the mesogenic azobenzene group. The physical properties of TBCs in the distinctive transition temperature ranges were investigated in terms of the liquid crystal (LC) content in the copolymers. The phase transition temperatures traced optically, thermally and rheologically were well coincided one another and clearly exhibited the phase transition of smectic-nematic-isotropic with increasing temperature. In the smectic phase, increasing temperature made the liquid crystal system more elastic, but viscosity (${\eta}'$) remained almost constant. In the nematic phase, increasing temperature abruptly decreased ${\eta}'$ and G', ultimately leading to isotropic phase. Both smectic and nematic phases exhibited Bingham viscosity behavior but the former gave much greater yield stress at the same LC content.

Simulation of Temperature-Dependent EPR Spectra of Mixed-Valence Copper (II)-Copper (I)-Complexes

  • So, Hyun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.111-114
    • /
    • 1987
  • Temperature-dependent, solution EPR spectra of two mixed-valence copper(II)-copper(I) complexes have been simulated by using modified Bloch equations. The transition probability for the intramolecular electron transfer is determined from the simulation. The transition probabilities have been fitted to the Arrhenius equation to derive the activation energies. The transition probability also varies according to the solvent used.

Effect of Pearlite Interlamellar Spacing on Impact Toughness and Ductile-Brittle Transition Temperature of Hypoeutectoid Steels (아공석강의 충격인성 및 연성-취성 천이온도에 미치는 펄라이트 층상간격의 영향)

  • Lee, Sang-In;Kang, Jun-Young;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.417-422
    • /
    • 2015
  • In this study, low-carbon hypoeutectoid steels with different ferrite-pearlite microstructures were fabricated by varying transformation temperature. The microstructural factors such as pearlite fraction and interlamellar spacing, and cementite thickness were quantitatively measured and then Charpy impact tests conducted on the specimens in order to investigate the correlation of the microstructural factors with impact toughness and ductile-brittle transition temperature. The microstructural analysis results showed that the pearlite interlamellar spacing and cementite thickness decreases while the pearlite fraction increases as the transformation temperature decreases. Although the specimens with higher pearlite fractions have low absorbed energy, on the other hand, the absorbed energy is higher in room temperature than in low temperature. The upper-shelf energy slightly increases with decreasing the pearlite interlamellar spacing. However, the ductile-brittle transition temperature is hardly affected by the pearlite interlamellar spacing because there is an optimum interlamellar spacing dependent on lamellar ferrite and cementite thickness and because the increase in pearlite fraction and the decrease in interlamellar spacing with decreasing transformation temperature have a contradictory role on absorbed energy.

Oxygen Deficiency, Hydrogen Doping, and Stress Effects on Metal-Insulator Transition in Single-Crystalline Vanadium Dioxide Nanobeams

  • Hong, Ung-Gi;Jang, Seong-Jin;Park, Jong-Bae;Bae, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.424.1-424.1
    • /
    • 2014
  • Vanadium dioxide (VO2) is a strongly correlated oxide exhibiting a first-order metal-insulator transition (MIT) that is accompanied by a structural phase transition from a low temperature monoclinic phase to a high-temperature rutile phase. VO2 has attracted significant attention because of a variety of possible applications based on its ultrafast MIT. Interestingly, the transition nature of VO2 is significantly affected by stress due to doping and/or interaction with a substrate and/or surface tension as well as defects. Accordingly, there have been considerable efforts to understand the influences of such factors on the phase transition and the fundamental mechanisms behind the MIT behavior. Here, we present the influences of oxygen deficiency, hydrogen doping, and substrate-induced stress on MIT phenomena in single-crystalline VO2 nanobeams. Specifically, the work function and the electrical resistance of the VO2 nanobeams change with the compositional variation due to the oxygen-deficiency-related defects. In addition, the VO2 nanobeams during exposure to hydrogen gas exhibit the reduction of transition temperature and the complex phase inhomogenieties arising from both substrate-induced stress and the formation of the hydrogen doping-induced metallic rutile phase.

  • PDF

Prediction of transition in Czochralski process (초크랄스키 공정에서의 천이예측)

  • 최정일;성형진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.108-116
    • /
    • 1997
  • A laboratory experiment was made of critical transition flow modes in Czocllralski convection. Numerical computation was also made to delineate the dynamic transition. The period of temperature oscillation ($t_p$) and the interval of temperature oscillation ($\Delta\theta$) were scrutinized to capture the critical transition regime. The mixed convection parameter was varied in the range of $0.134\le Ra/PrRe^2 \le3.804$. The data from calculation were in good agreement with ones from experiment. The influence of the Prandtl number on the transition was examined for Pr = 910, 4445 and 8889. To understand the transition mechanism, the detailed temperature oscillation modes, the isolines of meridional temperature and the axial velocity profiles were investigated.

  • PDF