• Title/Summary/Keyword: transition of growth phase

Search Result 170, Processing Time 0.034 seconds

Hydrothermal synthesis of PLT[$(Pb,La)TiO_3$] powders (수열법에 의한 PLT[$(Pb,La)TiO_3$ 분말의 합성)

  • 김판채;최종건
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.42-48
    • /
    • 1998
  • Synthesis of PLT($Pb_{1-X}La_{2X/3}TiO_3$, x=0.1~0.3) powders was carried out by hydrothermal method. Optimal conditions for synthesis were $250^{\circ}C$ of reaction temperature, 8M-KOH solution of hydrothermal solvent and 12 hrs reaction time, and the monolithic $Pb_{1-X}La_{2X/3}TiO_3$ particles were obtained with the composition of x$\leq$0.2. The tetragonality(c/a) and the phase transition temperature were decreased by the increment of the $La_2O_3$ contents in PLT solid solutions, and the Curie temperature of the $Pb_{1-X}La_{2X/3}TiO_3$(x=0.2) was $400^{\circ}C$. The shape of the synthesized particles were nearly spherical and the size was in the 20~200 nm range.

  • PDF

Crystallization of Borosilicate Glass with the Addition of $ZrO_2$ (지르코니아 첨가된 보로실리케이트 유리의 결정화)

  • Shim, Gyu-In;Kim, Young-Hwan;Lim, Jae-Min;Choi, Se-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1127-1132
    • /
    • 2010
  • Borosilicate glass was prepared in the composition of 81% $SiO_2$, 4% $Na_2O$, 2% $Al_2O_3$, 13% $B_2O_3$. The albite phase($NaAlSi_3O_8$) increased with the $ZrO_2$(0~10wt.%) addition. For measurement of glass transition temperature($T_g$), crystallization temperature($T_{c,max}$) measured by differential thermal analysis. The $T_g$ and $T_{c,max}$ were $510{\sim}530^{\circ}C$ $650{\sim}670^{\circ}C$, respectively. The crystallized glass was heated at various conditions(temperature, time). After nucleation at $550^{\circ}C$ for 2hours prior to crystal growth at $650^{\circ}C$ for 4hours, the resulting Vickers hardness, fracture toughness and bending strength were about $736H_v$, $1.0779MPa{\cdot}m^{1/2}$, and 493MPa, which were 17%, 45% and 149% higher than parent borosilicate glass, respectively. Crystal size and transmittance of crystallized borosilicate glass were analyzed by FE-SEM, EDX and UV-VIS-NIR spectrophotometer. Transmittance of crystallized borosilicate glass was decreased with increasing $ZrO_2$(wt%) at visible-range. The results prove that light-weight bulletproof can be fabricated by the crystallization of borosilicate glass.

In Situ Observation of Solidification Behavior in Undercooled $Pd_{40}Cu_{30}Ni_{10}P_{20}$ Alloy Melts during Linear Cooling (연속냉각 중 과냉 된 $Pd_{40}Cu_{30}Ni_{10}P_{20}$ 합금 용탕의 실시간 응고거동 관찰)

  • Kim, Ji-Hun
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.276-285
    • /
    • 2003
  • In the undercooled melt of $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy, the solidification behavior including nucleation and growth of crystals at the micrometer level has been observed in-situ by use of a confocal scanning laser microscope combined with an infrared image furnace. The $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy specimens were cooled from the liquid state to glass transition temperature. 575 K, at various cooling late under a helium gas flow. According to the cooling rate, the morphologies of the solidification front are changed among various types, irregular jog like front, columnar dendritic front, cellular grain, star like shape jog and fine grain, etc. The velocities of the solid-liquid interface are measured to be $10^{-5}{\sim}10^{-8}$ m/s which are at least two orders higher than the theoretical crystal growth rates. Combining the morphologies observed in terms of cooling rates and their solidification behaviors, we conclude that phase separation takes place in the undercooled molten $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy. The continuous cooling transformation (CCT) diagram was constructed from solidification onset time at various linear cooling conditions with different rate. The CCT diagram suggests that the critical cooling rate for glassy solidification is about 1.5 K/s, which is in agreement with the previous calorimetric findings.

Synthesis and luminescent properties of $Er^{3+}$ doped $CaZrO_3$ long persistent phosphors ($Er^{3+}$를 첨가한 $CaZrO_3$ 축광성 형광체의 합성 및 발광 특성 분석)

  • Park, Byeong-Seok;Choi, Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • Novel long persistent phosphors of $CaZrO_3:Er^{3+}$ have been synthesized by traditional solid state reaction method. The long persistent phosphor crystalline particles were characterized by the X-ray diffraction (XRD), photoluminescence spectrophotometer, thermoluminescence (TL) and luminance meter. The results reveal that the samples are composed of single $CaZrO_3$ phase. The broadband emission spectra of 446 nm peak and 550 nm peak was revealed by synthesized at high temperature in $N_2$ gas. Green long persistent phosphors have been observed in the sys_em for over 6 h after UV irradiation (254 nm). The main emission peak was ascribed to $Er^{3+}$ ions transition from $^5D_{5/2}{\rightarrow}^4F_{9/2},\;^2H_{12/2},\;^4S_{3/2}{\rightarrow}^4I_{13/2}\;and\;^2G_{9/2}{\rightarrow}^4I_{13/2}$, and the afterglow may be ascribed to the suitable trap centers in the $CaZrO_3$ host lattice.

Growth of $PbMg_{1/3}Nb_{2/3}O_3$ Single Crystals by Flux Method (융제법에 의한 $PbMg_{1/3}Nb_{2/3}O_3$단결정 성장)

  • 임경연;박찬석
    • Korean Journal of Crystallography
    • /
    • v.8 no.2
    • /
    • pp.75-80
    • /
    • 1997
  • A perovskite relaxor ferroelectrics PMN is used as an important material to investigate the diffusive phase transition phenomena. In this study PMN single crystals were grown and the microstructure were observed. For the growth of PMN single crystals, the spontaneous nucleation technique and the TSSG technique were used. 2-5mm single crystals were grown from PbO self flux and it was observed that only PMN crystals were grown when excess MgO was added over 100% as flux. Single crystals with well developed (001) faces were obtained from PbO-B2O3 flux. single crystals larger than 1 cm were grown from PbO-B2O3 flux by TXXG technique. For higher quality crystals, optimization of the variables such as the rotation speed of seed crystal, the orientation of seed crystal, and cooling rate is needed. With grown crystals, it was confirmed by TEM diffraction pattern of thin plate crystal that the 1:1 ordering of Mg2+ and Nb5+ with small volume exists.

  • PDF

Study on self-diffusion transport phenomena during mercurous bromide (Hg2Br2) vapor processes (브로민화수은(I)(Hg2Br2) 증착공정에서 자체확산 연구)

  • Nam Il Kim;Geug Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.48-54
    • /
    • 2024
  • During the Hg2Br2 physical vapor transport process with self-diffusion, it is concluded that for 10-3g0≤ g ≤ 1g0 the thermal buoyancy driven convection is dominant in the vapor phase; at the gravitational level of g = 10-4g0, the transition region from the convection to diffusion occurs; for 10-6g0 ≤ g ≤ 10-5g0, the diffusion mode is predominant. The total molar flux of Hg2Br2 decays exponentially with the decreasing of one tenth of gravitational magnitude. For 10℃ ≤ ΔT ≤ 50℃, the total molar flux increases linearly and directly with the temperature difference between the source and crystal regions.

A study on synthesis of $Li_{x}Mn_{2}O_{4}$ for asecondary battery with various $MnO_{2}$ structure (다양한 $MnO_{2}$ 구조에 따른 2차전지용 $Li_{x}Mn_{2}O_{4}$ 합성에 관한 연구)

  • 김익진;이영훈;이종호;이재한;장동환;이경희;고영신
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.600-608
    • /
    • 1996
  • Specific structural properties of Li intercalation reaction into the spinel relatedmanganese dioxide, $Li_{x}Mn_{2}O_{4}(0.2{\leq}x{\leq}2.0)$, are investigated by X-ray diffractional and electrochemical studies of Li/1M $LiClO_{4}$-propylene carbonate solution/$Li_{x}Mn_{2}O_{4}$ cell. The effect of the chemical composition and the reaction temperature on electrochemical parameter of $Li_{x}Mn_{2}O_{4}$ are studied by the phenomena of phase-transition, analysis of crystal lattice, fine structure, and thermal analysis. Treatment of the spinel $Li_{x}Mn_{2}O_{4}$ with aqueous acid was found to result in conversiton of $Li_{x}Mn_{2}O_{4}$ to nearly pure $MnO_{2}$, as evidenced by a reduction in the lattice constant $a_{c}$ from 8.255 to $8.031\;{\AA}$. At a composition range of $0.2{\leq}x{\leq}0.6$ in $Li_{x}Mn_{2}O_{4}$ the reduction proceeded in a homogeneous phase, which was characterized by a constant voltage of 3.9~3.7 V together with a lattice constant of $8.255\;{\AA}$.

  • PDF

Surface Texture Changes due to the Oxidation of Pyrite by Acidithiobacillus Ferrooxidans (애시디싸이오바실러스 페로악시댄스에 의한 황철석 산화에 따른 표면 조직의 변화)

  • Yu, Jae-Young;Koh, Hyun-Jin;Song, Hong-Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.235-244
    • /
    • 2011
  • A batch experiment of pyrite oxidation was performed and the surfaces of the reacted pyrite were regularly observed with the scanning electron microscope (SEM) together with the chemical compositions of the solution to help understand the oxidation mechanisms of pyrite by Acidithiobacillus ferrooxidans (Af). The dissolved Fe concentrations clearly indicated that Af experiences the lag and then exponential growth phase. An Af cell was observed to be attached to the surface of pyrite during the lag, implying that a direct leaching by the microbe really happens for the period. It is not certain, however, whether the main mechanism of pyrite oxidation during that time was the direct leaching or not, because there were just a few cells confirmed to be attached and most of the dissolved Fe was Fe(III). The dissolved Fe concentration stayed almost constant from the mid-lag phase to just before the onset of the exponential phase, suggesting that AI needs an adaptation time to switch its oxidation mechanism from one to the other whichever it is during that stage of growth. The moment of Af's cell division was observed by SEM on the surface of pyrite during the lag phase. The corrosion outline around the dividing cell was quite similar to the shape of the cell itself, which implies that the rate of the microbial oxidation is very uneven and the rate when the cell metabolizes should be much faster than that calculated from the concentration variation of the dissolved Fe. The number of etch holes by Af is much higher on the inoculated surfaces, indicating the average rate of pyrite oxidation is also much faster than that of abiotic oxidation. The microbial etch holes on pyrite surface are small and deep, which may influence the transition of the growth phases of Af from lag to exponential.

Fabrication and Characterization of Si Quantum Dots in a Superlattice by Si/C Co-Sputtering (실리콘과 탄소 동시 스퍼터링에 의한 실리콘 양자점 초격자 박막 제조 및 특성 분석)

  • Kim, Hyun-Jong;Moon, Ji-Hyun;Cho, Jun-Sik;Park, Sang-Hyun;Yoon, Kyung-Hoon;Song, Jin-Soo;O, Byung-Sung;Lee, Jeong-Chul
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.289-293
    • /
    • 2010
  • Silicon quantum dots (Si QDs) in a superlattice for high efficiency tandem solar cells were fabricated by magnetron rf sputtering and their characteristics were investigated. SiC/$Si_{1-x}C_x$ superlattices were deposited by co-sputtering of Si and C targets and annealed at $1000^{\circ}C$ for 20 minutes in a nitrogen atmosphere. The Si QDs in Si-rich layers were verified by transmission electron microscopy (TEM) and X-ray diffraction. The size of the QDs was observed to be 3-6 nm through high resolution TEM. Some crystal Si and -SiC peaks were clearly observed in the grazing incident X-ray diffractogram. Raman spectroscopy in the annealed sample showed a sharp peak at $516\;cm^{-1}$ which is an indication of Si QDs. Based on the Raman shift the size of the QD was estimated to be 4-6 nm. The volume fraction of Si crystals was calculated to be about 33%. The change of the FT-IR absorption spectrum from a Gaussian shape to a Lorentzian shape also confirmed the phase transition from an amorphous phase before annealing to a crystalline phase after annealing. The optical absorption coefficient also decreased, but the optical band gap increased from 1.5 eV to 2.1 eV after annealing. Therefore, it is expected that the optical energy gap of the QDs can be controlled with growth and annealing conditions.

In-situ Observations of Gas Phase Dynamics During Graphene Growth Using Solid-State Carbon Sources

  • Kwon, Tae-Yang;Kwak, Jinsung;Chu, Jae Hwan;Choi, Jae-Kyung;Lee, Mi-Sun;Kim, Sung Youb;Shin, Hyung-Joon;Park, Kibog;Park, Jang-Ung;Kwon, Soon-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.131-131
    • /
    • 2013
  • A single-layer graphene has been uniformly grown on a Cu surface at elevated temperatures by thermally processing a poly(methyl methacrylate) (PMMA) film in a rapid thermal annealing (RTA) system under vacuum. The detailed chemistry of the transition from solid-state carbon to graphene on the catalytic Cu surface was investigated by performing in-situ residual gas analysis while PMMA/Cu-foil samples being heated, in conjunction with interrupted growth studies to reconstruct ex-situ the heating process. The data clearly show that the formation of graphene occurs with hydrocarbon molecules vaporized from PMMA, such as methane and/or methyl radicals, as precursors rather than by the direct graphitization of solid-state carbon. We also found that the temperature for vaporizing hydrocarbon molecules from PMMA and the length of time the gaseous hydrocarbon atmosphere is maintained, which are dependent on both the heating temperature profile and the amount of a solid carbon feedstock are the dominant factors to determine the crystalline quality of the resulting graphene film. Under optimal growth conditions, the PMMA-derived graphene was found to have a carrier (hole) mobility as high as ~2,700 cm2V-1s-1 at room temperature, superior to common graphene converted from solid carbon.

  • PDF