• Title/Summary/Keyword: transition metal complexes

Search Result 140, Processing Time 0.027 seconds

Calculation of the Dipole Moments for Transition Metal Complexes

  • Golding, R. M.;Ahn, Sang-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.2
    • /
    • pp.48-55
    • /
    • 1981
  • A new approach in calculating the dipole moments for transition metal complexes has been proposed and the calculated results are tabulated with the experimental values. The calculated dipole moments are applied to the theoretical prediction or confirmation of the geometric structure for the transition metal complexes.

Density Functional Theoretical Study on the Hydricities of Transition Metal Hydride Complexes in Water

  • Kang, Suk-Bok;Cho, Young-Seuk;Hwang, Sun-Gu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2927-2929
    • /
    • 2009
  • The hydricities of d$^6$ metal hydride complexes in aqueous solution were calculated by using density functional theoretical (DFT) calculations coupled with a Poisson-Boltzmann (PB) solvent model. Hydricity describes the hydride donor ability of the metal-hydrogen bond, which assists in the study of the mechanism of many catalytic processes and chemical reactions that involve transition metal hydrides. The calculation scheme produced hydricity values that were in good agreement with experimental estimation. The inclusion of a water molecule as a weakly bound ligand to five-coordinate metal complexes gave an improved correlation result.

Photodynamic and Antioxidant Activities of Divalent Transition Metal Complexes of Methyl Pheophorbide-a

  • Yoon, Il;Park, Ho-Sung;Cui, Bing Cun;Li, Jia Zhu;Kim, Jung-Hwa;Lkhagvadulam, Byambajav;Shim, Young-Key
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2981-2987
    • /
    • 2011
  • A comparative study of the photodynamic and antioxidant activities of methyl pheophorbide-a (MPa, 1) and its transition metal(II) complexes (2-5) is described. Four transition metal complexes (palladium(II): 2, zinc(II): 3, cobalt(II): 4 and copper(II): 5) of MPa were prepared by reaction between the corresponding transition metal and 1, respectively, and were characterized by $^1H$-NMR and UV-vis spectroscopic and mass spectrometric analyses. In vitro results show a photodynamic therapy (PDT) efficacy with A549 cells might be attributed to a heavy atom effect of the transition metal complexes of MPa. Among them, 4 and 5 showed higher photodynamic activity than that of 1 at the concentration of 5 ${\mu}M$ at 24 h incubation after photoirradiation. The images of morphological change for 2-5 show evidence for the PDT effect with A549 cells. And the all transition metal complexes of MPa showed higher antioxidant activity than that of MPa, in which 4 showed the highest antioxidant activity.

Study of Complexes of C2- and C6-dihydroceramides with Transition Metal Ions Using Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS)

  • Lim, Jin-Yi;Kumar, Avvaru Praveen;Kim, Chang-Dae;Ahn, Chul-Jin;Yoo, Young-Jae;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.397-401
    • /
    • 2009
  • The complexes of $C_2-\;and\;C_6$-dihydroceramides with transition metal ions have been investigated by using Electrospray ionization-tandem mass spectrometry (ESI-MS/MS). The formation and fragmentation pathways of several doubly charged cluster ions as well as singly charged cluster ions of $C_2-\;and\;C_6$-dihydroceramides with transition metal ions have studied by ESI-MS/MS in the positive mode. Under ESI conditions, dihydroceramides form singly and doubly charged complexes with transition metal ions $(Mn^{2+},\;Fe^{2+},\;Co^{2+},\;Ni^{2+},\;and\;Zn^{2+}\;except\;Cu^{2+})$ with the compositions of $[DHCer+M+2H^2O-H]^+,\;[2DHCer+M+2H2O-H]^+,\;[3DHCer+M+2H2O-H]^+,\;[2DHCer+M]^{2+},\;[3DHCer+M]^{2+},\;[4DHCer+M]^{2+},\;[5DHCer+M]^{2+},\;and\;[6DHCer+M]^{2+}\;(DHCer\;=\;C_2-\;or\;C_6$-dihydroceramide, M = transition metal ion). The different complexation behavior of copper is responsible for relatively lower affinity of dihydroceramides to copper compared to those of other transition metals. It is also found that in the mass spectrum of the dihydroceramide complexes with copper(II), [2DHCer+Cu-H]$^+$ was observed with considerable intensity as well as [2DHCer+Cu+2$H_2O-H]^+$ due to its different geometry from those of other metals.

Synthesis and Physicochemical Properties of Schiff Base Macrocyclic Ligands and Their Transition Metal Chelates

  • Rafat, Fouzia;Siddiqi, K.S.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.912-918
    • /
    • 2011
  • Tetraaza Schiff base macrocyclic ligands, $L^1$,$L^2$ and their transition metal chelates have been synthesized and characterized by elemental analyses, IR, electronic, EPR and $^1H$ NMR spectra, TGA and magnetic measurements. The molar conductance of one milli-molar solution of the complexes measured in DMF indicates that the divalent metal complexes are nonelectrolyte while those of trivalent metal ion, are 1:1 electrolytic in the same solvent. The reduction of Racah parameter from the free ion value confirms the presence of considerable covalence of metal ligand sigma bond in the Co(II) and Mn(II) complexes. The EPR spectra of Cu(II) complexes at room temperature shows axial symmetry indicating a $d_x{^2}_{-y}{^2}$ ground state with significant covalent character. The thermal analysis suggests that the complexes do not contain water molecules because only the metal is left as residue.

Transition Metal-Catalyzed and -Promoted Reactions via Carbene and Vinylidene Complexes Generated from Alkynes

  • Ohe, Kouichi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2153-2161
    • /
    • 2007
  • The transition metal-induced in situ generation of carbene complexes from alkynes having a carbonyl or imino group as a nucleophilic functionality has been investigated. These reactive carbenoid species are generated with high atom efficiency through a 6-endo-dig cyclization mode based on the electrocyclization of vinylidene complexes or a 5-exo-dig cyclization mode in π-alkyne complexes, and have been found to serve as versatile intermediates in catalytic carbene transfer reactions. Highlighted and reviewed in this account are the generation and preparation of pyranylidene, furylcarbene, pyrrolylcarbene, and vinylcarbene complexes and their application to [3,3]sigmatropic rearrangement of acylcyclopropylvinylidenes, catalytic cyclopropanation reactions, [2,3]sigmatropic rearrangement or condensation reactions via ylides, ring-opening and substitution reactions with heteroaromatic compounds, and catalytic isomerization of oligoynes.

Synthesis and Spectral Characterization of Antifungal Sensitive Schiff Base Transition Metal Complexes

  • Raman, N.;Sakthivel, A.;Rajasekaran, K.
    • Mycobiology
    • /
    • v.35 no.3
    • /
    • pp.150-153
    • /
    • 2007
  • New $N_2O_2$ donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and $^1H$ NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of $10{\sim}31{\mu}g/ml$.

Development and Application of Group IV Transition Metal Oxide Precursors

  • Kim, Da Hye;Park, Bo Keun;Jeone, Dong Ju;Kim, Chang Gyoun;Son, Seung Uk;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.303.2-303.2
    • /
    • 2014
  • The oxides of group IV transition metals such as titanium, zirconium, hafnium have many important current and future application, including protective coatings, sensors and dielectric layers in thin film electroluminescent (TFEL) devices. Recently, group IV transition metal oxide films have been intensively investigated as replacements for SiO2. Due to high permittivities (k~14-25) compared with SiO2 (k~3.9), large band-gaps, large band offsets and high thermodynamic stability on silicon. Herein, we report the synthesis of new group IV transition metal complexes as useful precursors to deposit their oxide thin films using chemical vapor deposition technique. The complexes were characterized by FT-IR, 1H NMR, 13C NMR and thermogravimetric analysis (TGA). Newly synthesised compounds show high volatility and thermal stability, so we are trying to deposit metal oxide thin films using the complexes by Atomic Layer Deposition (ALD).

  • PDF

Stability Constants of Divalent Transition and Trivalent Lanthanide Metal Ion Complexes of Macrocyclic Triazatri(Methylacetic Acid)

  • 김동원;홍춘표;최기영;김창숙;이남수;장영훈;이재국
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.790-793
    • /
    • 1996
  • The azacrown compound, 1,7-dioxa-4,10,13-triazacyclopentadecane-N,N',N"-tri(methyl-acetic acid)(N3O2-tri(methylacetic acid)) was synthesized by modified procedure of Krespan. Potentiometric method has been used to determine the protonation constants of N3O2-tri(methylacetic acid) and stability constants of complexes on the divalent transition metal ions (Co2+, Ni2+, Cu2+, and Zn2+) and trivalent metal ions (Ce3+, Eu3+, Gd3+, and Yb3+) with N3O2-tri(methylacetic acid). The stability constants for the complexes of the divalent transition metal ions studied in the present work with N3O2-tri(methylacetic acid) were 11.4 for Co2+, 11.63 for Ni2+, 13.51 for Cu2+, and 11.65 for Zn2+, respectively. Thus, the order of the stability constants for complexes on the transition metal ions with N3O2-tri(methylacetic acid) was shown Co2+ < Ni2+ < Cu2+ > Zn2+ as same as the order of Irving-Williams series. The stability constants of Ce3+, Eu3+, Gd3+, and Yb3+ trivalent lanthanide metal ion complexes of N3O2-tri(methylacetic acid) were, respectively, 11.26 for Ce3+, 11.56 for Eu3+, 11.49 for Gd3+, and 11.80 for Yb3+. The values of the stability constants on trivalent metal ions with the ligand are increasing according to increase atomic number, due to increase acidity. But the value of stability constant of Gd3+ ion is less than the value of Eu3+ ion. This disordered behavior is also reported by Moeller.