• Title/Summary/Keyword: transient vibration

Search Result 408, Processing Time 0.027 seconds

Effects of Thermal Contact Resistance on Transient Thermoelastic Contacts for an Elastic Foundation (시간에 따른 탄성지지 열탄성 접촉에 대한 열접촉저항의 영향)

  • Jang, Yong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.330-333
    • /
    • 2005
  • The paper presents a numerical solution to the problem of a hot rigid indenter siding over a thermoelastic Winkler foundation with a thermal contact resistance at constant speed. It is shown analytically that no steady-state solution can exist for sufficiently high temperature or sufficiently small normal load or speed regardless of the thermal contact resistance. However, the steady state solution may exist in the same situation if the thermal contact resistance is considered. This means that the effect of the large values of temperature difference and small value of force or velocity which occur at no steady state can be lessened due to the thermal contact resistance. When there is no steady-state the predicted transient behavior involves regions of transient stationary contact interspersed with regions of separation regardless of the thermal contact resistance. Initially, the system typically exhibits a small number of relatively large contact and separation regions, but after the initial transient the trailing edge of the contact area is only established and the leading edge loses contact, reducing the total extent of contact considerably. As time progresses, larger and larger number of small contact areas are established, until eventually the accuracy of the algorithm is limited by the discretization used.

  • PDF

Comparison of Dynamic Property Estimation by Transient Vibration and Synchronized Human Excitation (건물의 상시진동계측과 인력가진계측을 통한 동적특성 비교)

  • Jang, Young-Ju;Cho, Bong-Ho;Kim, Hong-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2011
  • The transient vibration test and synchronized human excitation is performed for low-rise concrete buildings and their identified natural frequency, damping ratio, and mode shape are compared. Form the identified dynamic parameters, it was found that the damping ratio obtained through the synchronized human excitation test is greater than those obtained from the transient vibration test. However, the mode shapes of the first mode are not significantly different regardless of the test method. Further, the stiffness of the interior brick partition considerably affect the stiffness of the entire building such that the first natural mode of rectangular shaped building occurred in the longitudinal direction rather than transverse direction.

Dynamic Analysis of Gimbal Structure System Including Nonlinear Elastic Rubber Vibration Isolator with Shock Acceleration (비선형 탄성 방진 고무부에 충격 가속도를 받는 짐발 구조 시스템의 동적 해석)

  • Lee, Sang Eun;Lee, Tae Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.415-422
    • /
    • 2016
  • When shock acceleration is applied to a mechanical system, it may cause malfunctioning and damage to the system. Hence, to prevent these problems when developing a gimbal structure system for observation reconnaissance, the MIL-STD-810G shock standard must be satisfied as a design specification. Rubber vibration isolators are generally assembled on the base of the system in order to reduce the shock transferred from the aircraft. It is difficult to analyze the transient behavior of the system accurately, because rubber has a nonlinear load-deformation curve. To treat the nonlinear characteristic of the rubber, bilinear approximation was introduced. Using this assumption, transient responses of the system under base shock acceleration were calculated by the finite element method. In addition, experiments with a true prototype were performed using the same conditions as the analytical model. Compared with experimental data, the proposed numerical method is useful for the transient analysis of gimbal structure systems, including rubber vibration isolators with nonlinear stiffness and damping.

Structural Vibration Analysis for a Composite Smart UAV Considering Dynamic Hub-loads of the Tilt-rotor (틸트로터 허브 동하중을 고려한 복합재 스마트 무인기 진동해석)

  • Kim, Dong-Hyun;Jung, Se-Un;Koo, Kyo-Nam;Kim, Sung-Jun;Kim, Sung-Chan;Lee, Ju-Young;Choi, Ik-Hyeon;Lee, Jung-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.63-71
    • /
    • 2005
  • In this study, structural vibration analyses of a composite smart unmanned aerial vehicle (UAV) have been conducted considering dynamic hub-loads of tilt-rotor. Practical computational structural dynamics technique based on the finite element method is applied using MSC/NASTRAN. The present smart UAV(TR-S2) structural model is constructed as full 3D configurations with both the helicopter flight mode and the airplane flight mode. Modal based transient response and frequency response analyses are used to efficiently investigate vibration characteristics of structure and installed electronic equipments. It is typically shown that the helicopter flight mode with the 90-deg tilting angle is the most critical case for the induced vibration of installed electronic equipments in the front.

Droplet transient migration and dynamic force balance mechanism on vibration-controlled micro-texture surfaces

  • Xu, Jing;Liu, Guodong;Lian, Jiadi;Ni, Jing;Xiao, Jing
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1368-1374
    • /
    • 2018
  • In this paper, forced vibration was used to regulate the droplet migration, fully recording the transient migration of droplets on a micro-textured substrate under the resonance frequency by a high-speed camera. The influence of resonance frequency and dynamic migration characteristics of droplets on the solid micro-texture surface under lateral vibration were researched. The experiment demonstrates that the driving force is caused by the difference between the left and right contact angles made the droplet oscillate and migrate, and as time t increases, the left and right contact points are periodically shifted and the amplitude of migration increases. Therefore, based on the droplet migration behavior and its force balance mechanism, a spring vibration model of migration behavior of the vibrating droplet micro unit was set up to predict the complete trajectory of its migration on a solid surface. The calculation results show that the theoretical displacement is less than the experimental displacement, and the longer the time, the larger the difference. Affected by the vibration, part of the droplet permeates through the micro-texture, resulting in the droplet losing height and the contact angle becoming smaller as well. While the other part of droplet overcomes the internal surface tension to migrate.

Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation

  • Sahan, Mehmet Fatih
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.889-907
    • /
    • 2015
  • This paper aims to present an alternative analytical method for transient vibration analysis of doubly-curved laminated shells subjected to dynamic loads. In the method proposed, the governing differential equations of laminated shell are derived using the dynamic version of the principle of virtual displacements. The governing equations of first order shear deformation laminated shell are obtained by Navier solution procedure. Time-dependent equations are transformed to the Laplace domain and then Laplace parameter dependent equations are solved numerically. The results obtained in the Laplace domain are transformed to the time domain with the help of modified Durbin's numerical inverse Laplace transform method. Verification of the presented method is carried out by comparing the results with those obtained by Newmark method and ANSYS finite element software. Also effects of number of laminates, different material properties and shell geometries are discussed. The numerical results have proved that the presented procedure is a highly accurate and efficient solution method.

Study for Characteristics of DDAM using MIL-S-901D Shock Test and Transient Response Analysis (MIL-S-901D 충격시험과 과도응답해석을 이용한 DDAM 특성에 관한 연구)

  • Song, Oh-Seop;Kim, Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1132-1139
    • /
    • 2006
  • Non-contact underwater explosions against surface ship could cause extensive equipment damage during wartime service. Thus, the need to develop methods for the design of shock resistant equipment structures and systems was strongly established. In analytical methods, DDAM(Dynamic Design and Analysis Method) and transient repsonse method are used for ship shock design. In this paper, to analyze the characteristics of DDAM, medium weight shock test, DDAM and transient response analysis for missile system equipment are performed.

Dynamic Analysis of a Cantilever Beam Undertaking Impulsive Force That Undergoes Rigid Body Motion (강체 운동을 고려한 충격을 받는 외팔 보의 동적 해석)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.890-895
    • /
    • 2005
  • This paper presents the dynamic analysis of a cantilever beam undertaking impulsive force that undergoes rigid body motion. The transient response of the beam induced by the impulsive force and the rigid body motion is calculated based on hybrid deformation variable modeling method by applying the Rayleigh-Ritz assumed mode method. The stiffness variation effect caused by the rigid body motion is considered in this modeling. The effects of the impulsive force position and the angular velocity on the transient responses of the beam are investigated through numerical studies.

  • PDF