• Title/Summary/Keyword: transient time integration

Search Result 92, Processing Time 0.017 seconds

Explicit Transient Simulation of SH-waves Using a Spectral Element Method (스펙트럴 요소법을 이용한 SH파 전파의 외연적 시간이력해석)

  • Youn, Seungwook;Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.87-95
    • /
    • 2018
  • This paper introduces a new explicit spectral element method for the simulation of SH-waves in semi-infinite domains. To simulate the wave motion in unbounded domains, it is necessary to reduce the infinite extent to a finite computational domain of interest. To prevent the wave reflection from the trunctated boundaries, perfectly matched layer(PML) wave-absorbing boundary is introduced. The forward problem for simulating SH-waves in PML-truncated domains can be formulated as second-order PDEs. The second-order semi-discrete form of the governing PDEs is constructed by using a mixed spectral elements with Legendre-gauss-Lobatto quadrature method, which results in a diagonalized mass matrix. Then the second-order semi-discrete form is transformed to a first-order, whose solutions are calculated by the fourth-order Runge-Kutta method. Numerical examples showed that solutions of SH-wave in the two-dimensional analysis domain resulted in stable and accurate, and reflections from truncated boundaries could be reduced by using PML boundaries. Elastic wave propagation analysis using explicit time integration method may be apt for solving larger domain problems such as three-dimensional elastic wave problem more efficiently.

Simulation of Past 6000-Year Climate by Using the Earth System Model of Intermediate Complexity LOVECLIM (중간복잡도 지구시스템모델 LOVECLIM을 이용한 과거 6천년 기후 변화 모의)

  • Jun, Sang-Yoon
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.87-103
    • /
    • 2019
  • This study introduces the overall characteristics of LOVECLIM version 1.3, the earth system model of intermediate complexity (EMIC), including the installation and operation processes by conducting two kinds of past climate simulation. First climate simulation is the equilibrium experiment during the mid-Holocene (6,000 BP), when orbital parameters were different compared to those at present. The overall accuracy of simulated global atmospheric fields by LOVECLIM is relatively lower than that in Coupled Model Intercomparison Project phase 5 (CMIP5) and Paleoclimate modelling Intercomparison Project phase 3 (PMIP3) simulations. However, surface temperature over the globe, the 800 hPa meridional wind over the mid-latitude coastal region, and the 200 hPa zonal wind from LOVECLIM show similar spatial distribution to those multi-model mean of CMIP5/PMIP3 climate models. Second one is the transient climate experiment from mid-Holocene to present. LOVECLIM well captures the major differences in surface temperature between preindustrial and mid-Holocene simulations by CMIP5/PMIP3 multi-model mean, even though it was performed with short integration time (i.e., about four days in a single CPU environment). In this way, although the earth system model of intermediate complexity has a limit due to its relatively low accuracy, it can be a very useful tool in the specific research area such as paleoclimate.