• Title/Summary/Keyword: transient temperature field

Search Result 114, Processing Time 0.025 seconds

Diagnosis of HSC Convective Flow Using a Digital Holographic Interferometry and PIV System (디지털 홀로그래픽 간섭계와 PIV를 이용한 Hele-Shaw Cell 내부 열유동 해석)

  • Kim, Seok;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.493-499
    • /
    • 2004
  • Variations of temperature and velocity fields in a Hele-Shaw convection cell (HSC) were investigated using a holographic interferometry and 2-D PIV system with varying Rayleigh number. To measure quasi-steady variation of temperature field, two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed. In the double-exposure method, unwanted waves were eliminated effectively using a digital image processing technique. The reconstructed images are clear, but transient flow cannot be reconstructed clearly. On the other hand, transient convective flow can be reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noises, compared with the double-exposure method. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow structure at high Rayleigh numbers. The periodic flow pattern at high Rayleigh numbers obtained by the real-time holographic interferometer method is in a good agreement with the PIV results.

Numerical Study on the Effect of Exhaust Flow Pattern under Real Running Condition on the Performance and Reliability of Closed-Coupled Catalyst (실 운전조건에서의 배기유동패턴이 근접장착 촉매변환기의 성능 및 신뢰성에 미치는 영향에 관한 수치적 연구)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.54-61
    • /
    • 2004
  • The engine-out flow is highly transient and hot, and may place tremendous thermal and inertial loads on a closed-coupled catalyst. Therefore, time-dependent and detailed flow and thermal field simulation may be crucial. The aim of this study is to develop combined chemical reaction and multi-dimensional fluid dynamic mathematical model and to study the effect of unsteady pulsating thermal and flow characteristics on thermal reliability of closed-coupled catalyst. The effect of cell density on the conversion performance under real running condition is also investigated. Unlike previous studies, the present study focuses on coupling between the problems of pulsating flow pattern and catalyst thermal response and conversion efficiency. The results are expressed in terms of temporal evolution of flow, pollutant and temperature distribution as well as transient characteristics of conversion efficiency. Fundamental understanding of the flow and thermal phenomena of closed-coupled catalyst under real running condition is presented. It is shown that instants of significantly low values of flow uniformity and conversion efficiency exist during exhaust blowdown and the temporal varaition of flow uniformity is very similar in pattern to one of conversion efficiency. It is also found that the location of hot spot in monolith is directly affected by transient flow pattern in closed-coupled catalyst.

A Study on the Electrical Conduction of Plasma-Co-Polymerized Organic Thin Film (플라즈마 공중합 유기 박막의 전기 전도에 관한 연구)

  • 육재호;박재윤;이덕출;박상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.108-111
    • /
    • 1988
  • In this study, the electrical conduction properties of plasma-polymerized (MMA+Styrene) thin film have been investigated. The measurements of transient conduction currents were carried out in the temperature of 50 to 150$^{\circ}C$ at electric field of 10$^4$to 10$\^$6/V/cm. The electric field-current density characteristic curves were divided into three regions-ohmic region, child region, sudden-increasing region. It is shown that the conduction mechanism of this thin film is in good agreement with SCLC(space charge limited current) model by applying the high field conduction theories.

  • PDF

Quasi-Transient Method for Thermal Response of Blunt Body in a Supersonic Flow (준-비정상해석 기법을 통한 초음속 유동 내 무딘 물체의 열응답 예측)

  • Bae, Hyung Mo;Kim, Jihyuk;Bae, Ji-Yeul;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.495-500
    • /
    • 2017
  • In the boundary layer of supersonic or hypersonic vehicles, there is the conversion from kinetic energy to thermal energy, called aerodynamic heating. Aerodynamic heating has to be considered to design supersonic vehicles, because it induces severe heat flux to surface. Transient heat transfer analysis with CFD is used to predict thermal response of vehicles, however transient heat transfer analysis needs excessive computing powers. Loosely coupled method is widely used for evaluating thermal response, however it needs to be revised for overestimated heat flux. In this research, quasi-transient method, which is combined loosely coupled method and conjugate heat transfer analysis, is proposed for evaluating thermal response with efficiency and reliability. Defining reference time of splitting flight scenario for transient simulation is important on accuracy of quasi-transient method, however there is no algorithm to determine. Therefore the research suggests the algorithm with various flow conditions to define reference time. Supersonic flow field of blunt body with constant acceleration is calculated to evaluate quasi-transient method. Temperature difference between transient and quasi-transient method is about 11.4%, and calculation time reduces 28 times for using quasi-transient method.

Mixed-mode simulation of transient characteristics of 4H-SiC DMOSFETs (Mixed-mode simulation을 이용한 4H-SiC DMOSFETs의 채널 길이에 따른 transient 특성 분석)

  • Kang, Min-Seok;Choi, Chang-Yong;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.131-131
    • /
    • 2009
  • Silicon Carbide (SiC) is a material with a wide bandgap (3.26eV), a high critical electric field (~2.3MV/cm), a and a high bulk electron mobility ($\sim900cm^2/Vs$). These electronic properties allow high breakdown voltage, high-speed switching capability, and high temperature operation compared to Si devices. Although various SiC DMOSFET structures have been reported so far for optimizing performances, the effect of channel dimension on the switching performance of SiC DMOSFETs has not been extensively examined. This paper studies different channel dimensons ($L_{CH}$ : $0.5{\mu}m$, $1\;{\mu}m$, $1.5\;{\mu}m$) and their effect on the the device transient characteristics. The key design parameters for SiC DMOSFETs have been optimized and a physics-based two-dimensional (2-D) mixed device and circuit simulator by Silvaco Inc. has been used to understand the relationship. with the switching characteristics. To investigate transient characteristic of the device, mixed-mode simulation has been performed, where the solution of the basic transport equations for the 2-D device structures is directly embedded into the solution procedure for the circuit equations. We observe an increase in the turn-on and turn-off time with increasing the channel length. The switching time in 4H-SiC DMOSFETs have been found to be seriously affected by the various intrinsic parasitic components, such as gate-source capacitance and channel resistance. The intrinsic parasitic components relate to the delay time required for the carrier transit from source to drain. Therefore, improvement of switching speed in 4H-SiC DMOSFETs is essential to reduce the gate-source capacitance and channel resistance.

  • PDF

Main Steam Temperature Controller Design of a Fossil Power Plant by Generic Model Control (Generic Model Control에 의한 화력발전소의 주증기 온도제어기 설계)

  • Cho, Y.C.;Nam, H.K.;Lee, K.S.;Yoon, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.673-675
    • /
    • 1995
  • A nonlinear process-model based control for main steam temperature control of a 100MW oil-fired drum-type fossil power plant is delveloped and its performances are compared to those of the conventional PID control. The process model for simulation is derived based "first priciple approach" and is validated in steady and transient conditions. The model is in good agreements with the field test data. Performances of the nonlinear PMBC for main steam temperature control are far superior to those of PID in all aspects for the disturbances of ramp increase in load and step change in fuel Btu value.

  • PDF

NUMERICAL ANALYSIS PROCEDURE FOR PREDICTING TEMPERATURE FIELD IN DESIGN OF AUTOMOTIVE FRICTION CLUTCH

  • LEE B.;CHO C.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.61-68
    • /
    • 2006
  • In design of the friction clutches of automobiles, knowledge on the thermo-elasticity a priori is very informative in the initial design stage. Especially, the precise prediction technique of maximum temperature and stress should be requested in design of mechanical clutches for their durability and compactness. In this study, an efficient and reliable analysis technique for the design of the mechanical clutches by using computer modeling and numerical method was developed. A commercial software STAR-$CD^{TM}$ was used to find the convective heat-transfer coefficients. MSC/$NASTRAN^{TM}$ software was followed to predict the temperature of clutch with utilization of estimated coefficients. Some experiments were also performed with a dynamometer to verify the procedure and calibrate the thermal load. As a conclusion, a design procedure, including numerical steps and experimental techniques for calibration, was proposed.

Non-simple magnetothermoelastic solid cylinder with variable thermal conductivity due to harmonically varying heat

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.681-697
    • /
    • 2016
  • The model of two-temperature magneto-thermoelasticity for a non-simple variable-thermal-conductivity infinitely-long solid cylinder is established. The present cylinder is made of an isotropic homogeneous thermoelastic material and its bounding plane is traction-free and subjected to a time-dependent temperature. An exact solution is firstly obtained in Laplace transform space to obtain the displacement, incremental temperature, and thermal stresses. The inversion of Laplace transforms has been carried out numerically since the response is of more interest in the transient state. A detailed analysis of the effects of phase-lags, an angular frequency of thermal vibration and the variability of thermal conductivity parameter on the field quantities is presented.

Application of Temperature-compensated Resistivity Probe in the Field (온도보상형 전기저항 프로브의 현장 적용성 평가)

  • Jung, Soon-Hyuck;Yoon, Hyung-Koo;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.117-125
    • /
    • 2011
  • The practical use of the electrical resistivity, which can makes the acquirement of the high resolution data in specific area, is increased in order to obtain a reasonable data for a ground investigation. The objective of this study is development of TRPF(Temperature-compensated Resistivity Probe for Field test), and an application in the field test for obtaining a reliable electrical resistivity value about considering the temperature effects. Temperature sensor is attached at 15mm, 30mm, 90mm below from the cone tip in consideration with the results of temperature transient process of cone probe and safety, and the angle of cone tip is $60^{\circ}$ for geometrical reason and minimizing the disturbance during the penetration test. Diameter of the cone probe is equally 35.7mm and penetration rate is 2 cm/sec for a comparison with standard cones such as CPT and SPT, and others. The temperature change is instantly observed around $4^{\circ}C$ when touching the ground, and the comparing results among the other cones indicates that the temperature compensation should be conducted in the ground survey using the electrical resistivity. This study shows that the necessity of temperature effects compensation during penetration test through the development and field verification of TRPF (Temperature-compensated Resistivity Probe for Field test).

An Analysis Finite Element for Element for Elasto-Plastic Thermal Stresses Considerating Strain Hysteresis at Quenching Process of Carbon Steel (I) - Analysis of temperature distribution - (탄소강의 담금질 처리과정에서 변형율이력을 고려한 탄소성열응력의 유한요소 해석(I) - 온도분포의 해석 -)

  • Kim, Ok-Sam;Cho, Eui-Il;Koo, Bon-Kwon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.3
    • /
    • pp.213-221
    • /
    • 1995
  • Temperature distribution, transformation and residual stresses generated during the quenching process of carbon steel. It follows many difficulties in the analytical considerations on those quenching process because of the coupling effects on temperature and metallic structures. In this paper one of the basic study on the quenching stresses was carried out for the case of the round steel bar specimen(SM45C) with 40mm both in its diameter and length. The temperature distributions considering strain hysteresis were numerically calculated by finite element technique. In calculating the transient temperature field, the heat flux between water and rod surface was determined from the heat transfer coefficient. The gradient of temperature is almost same to geometric of specimen. At early stage of the quenching process, the abrupt temperature gradient has been shown in the surface of the specimen.

  • PDF