• 제목/요약/키워드: transient dynamic analysis

검색결과 536건 처리시간 0.023초

유한요소법을 이용한 종형 구조물의 동적거동 및 음향거동에 관한 연구 (A Study on Dynamic and Acoustic Behavior of Beel Type Structure Using Finite Element Method)

  • 정석주
    • 소음진동
    • /
    • 제6권4호
    • /
    • pp.447-456
    • /
    • 1996
  • Dynamic characteristics of the bell-type structure including acoustic effects and transient dynamic problems were analyzed numerically. Natural frequencies, mode shapes and transient dynamic analysis used the finite element method with 3-D general shell element. Mode shapes and stress distributions of transient dynamic analysis were expressed by computer graphics. The method using this study was evaluated by comparision of theoretical results at reference papers(14), (15) and the experimental test using Fast Fourier Transform analyzer. Vibrational modes governing acoustic characteristics of the typical bell-type structure depended on the first flexural mode(4-0 mode) and the second flexural mode(6-0 mode). Asymmetric effects by Dangiwas, acoustic holes gave rise to beat frequencies, and the Dangjwa was found to be most effective. When impact load acted on the bell, stress concentration occured at the rim part of bell. It was found that the bell type structure should be designed thickly at the rim part in order to prevent impact load from stress concentration.

  • PDF

Dynamic Monte Carlo transient analysis for the Organization for Economic Co-operation and Development Nuclear Energy Agency (OECD/NEA) C5G7-TD benchmark

  • Shaukat, Nadeem;Ryu, Min;Shim, Hyung Jin
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.920-927
    • /
    • 2017
  • With ever-advancing computer technology, the Monte Carlo (MC) neutron transport calculation is expanding its application area to nuclear reactor transient analysis. Dynamic MC (DMC) neutron tracking for transient analysis requires efficient algorithms for delayed neutron generation, neutron population control, and initial condition modeling. In this paper, a new MC steady-state simulation method based on time-dependent MC neutron tracking is proposed for steady-state initial condition modeling; during this process, prompt neutron sources and delayed neutron precursors for the DMC transient simulation can easily be sampled. The DMC method, including the proposed time-dependent DMC steady-state simulation method, has been implemented in McCARD and applied for two-dimensional core kinetics problems in the time-dependent neutron transport benchmark C5G7-TD. The McCARD DMC calculation results show good agreement with results of a deterministic transport analysis code, nTRACER.

Development of dynamic behavior of the novel composite T-joints: Numerical and experimental

  • Mokhtari, Madjid;Shahravi, Morteza;Zabihpoor, Mahmood
    • Advances in aircraft and spacecraft science
    • /
    • 제5권3호
    • /
    • pp.385-400
    • /
    • 2018
  • In this paper dynamic behavior (modal analysis and dynamic transient response) of a novel sandwich T-joint is numerically and experimentally investigated. An epoxy adhesive is selected for bonding purpose and making the step wise graded behavior of adhesive region. The effect of the step graded behavior of the adhesive zone on dynamic behavior of a sandwich T-joint is numerically studied. Finite element analysis (FEA) of the T-joints with carbon fiber reinforced polymer (CFRP) face-sheets is performed by ABAQUS 6.12-1 FEM code software. Modal analysis and dynamic half-sine transient response of the sandwich T-joint are presented in this paper. Two verification processes employed to verify the dynamic modeling of the manufactured sandwich panels and T-joint modeling. It has been shown that the step wise graded adhesive zone cases have changed the second natural frequency by about 5%. Also, it has been shown that the different arranges in the step wise graded adhesive zone significantly affect the maximum stresses due to transient dynamic loading by 1112% decrease in maximum peel stress and 691.9% decrease in maximum shear stress on the adhesive region.

궤도차량의 차체구조해석 (A Structural Analysis of the Tracked Vehicle)

  • 이영신;최창;전병희;오재문
    • 전산구조공학
    • /
    • 제10권3호
    • /
    • pp.145-155
    • /
    • 1997
  • 본 연구에서는 ANSYS와 ABAQUS 상용 유한요소 코드를 이용하여 궤도차량의 정적.동적 해석을 충격하중과 주행하중에 대해서 수행하였다. 궤도차량이 충격하중을 받을 때 최대 동적 Von Mises응력은 상판의 빔보강재와 레이스링사이에서 발생하였으며 응력수준은 390-450MPa이다. 정하중에 대한 동하중수 1.6을 고려했을 경우 동적 해석과 동적하중계수가 포함된 정하중 해석은 유사한 결과를 보이고 있다. 과도응력은 주로 레이싱링 주위에서 발생하고 있다. 주행하중의 경우 최대응력은 로드휠 유기압 현가장치 #1번에서 450MPa정도이며, 정적해석과 비선형 해석의 결과가 유사하다.

  • PDF

Transient response analysis of tapered FRP poles with flexible joints by an efficient one-dimensional FE model

  • Saboori, Behnam;Khalili, Seyed Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.243-259
    • /
    • 2016
  • This research develops a finite element code for the transient dynamic analysis of tapered fiber reinforced polymer (FRP) poles with hollow circular cross-section and flexible joints used in power transmission lines. The FRP poles are modeled by tapered beam elements and their flexible joints by a rotational spring. To solve the time equations of transient dynamic analysis, precise time integration method is utilized. In order to verify the utilized formulations, a typical jointed FRP pole under step, triangular and sine pulses is analyzed by the developed finite element code and also ANSYS commercial finite element software for comparison. Thereafter, the effect of joint flexibility on its dynamic behavior is investigated. It is observed that by increasing the joint stiffness, the amplitude of the pole tip deflection history decreases, and the time of occurrence of the maximum deflection is earlier.

A Simple Dynamic Model and Transient Simulation of the Nuclear Power Reactor on Microcomputers

  • Han, Gee-Yang;Park, Cheol
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.605-610
    • /
    • 1997
  • A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis.

  • PDF

Transient energy flow in ship plate and shell structures under low velocity impact

  • Liu, Z.S.;Swaddiwudhipong, S.;Lu, C.;Hua, J.
    • Structural Engineering and Mechanics
    • /
    • 제20권4호
    • /
    • pp.451-463
    • /
    • 2005
  • Structural members commonly employed in marine and off-shore structures are usually fabricated from plates and shells. Collision of this class of structures is usually modeled as plate and shell structures subjected to dynamic impact loading. The understanding of the dynamic response and energy transmission of the structures subjected to low velocity impact is useful for the efficient design of this type of structures. The transmissions of transient energy flow and dynamic transient response of these structures under low velocity impact are presented in the paper. The structural intensity approach is adopted to study the elastic transient dynamic characteristics of the plate structures under low velocity impact. The nine-node degenerated shell elements are adopted to model both the target and impactor in the dynamic impact response analysis. The structural intensity streamline representation is introduced to interpret energy flow paths for transient dynamic response of the structures. Numerical results, including contact force and transient energy flow vectors as well as structural intensity stream lines, demonstrate the efficiency of the present approach and attenuating impact effects on this type of structures.

동적 시간이력 탄소성 지진 해석을 위한 레일레이 감쇠계수 결정방법 고찰 (Investigation on the Determination Method of Rayleigh Damping Coefficients for Dynamic Time History Elastic-Plastic Seismic Analysis)

  • 김종성;이석현;권형도;오창영
    • 한국압력기기공학회 논문집
    • /
    • 제13권2호
    • /
    • pp.38-43
    • /
    • 2017
  • This paper investigates how to determine the Rayleigh damping coefficients for dynamic time history seismic analysis of piping systems. Three methods are applied. The first one is a conventional method to use the natural frequencies of the mode 1 and 2, derived from dynamic analysis. The second method is to determine the Rayleigh damping coefficients based on frequency range of the acceleration histories. The last one is a iterative transient response analysis method using the transient analysis results without and with damping. It is found that the conventional method and the iterative transient response method yield the same results whereas the acceleration frequency-basis method provides more conservative result than the other methods. In addition, it is concluded that the iterative transient response method is recommended.

동적설계해석과 과도응답해석을 이용한 함정용 대형 전동기의 내충격성 평가 (A Shock-Proof Evaluation of a Naval Vessel Motor using DDAM and Transient Response Analysis)

  • 이성욱;김진;공영경
    • 한국기계가공학회지
    • /
    • 제9권5호
    • /
    • pp.76-82
    • /
    • 2010
  • In this study, we carried out to evaluate the shock-proof of a large scale motor for the naval vessel using dynamic design analysis method (DDAM) and full transient dynamic analysis. Analytical models for main assemblies (motor frame, rotor and stator assembly) were consisted of the tetrahedral solid elements and the equipments which installed in the upper side of the motor were substituted the mass elements. And we also modelled resilient mounts of a motor using the beam elements with appropriate directional stiffness. The DDAM was conducted according to NRL memorandum report 1396 and the full transient dynamic analysis was performed applying directional triple half triangle shock wave to the motor using ANSYS 12. As a result, we could compare of the results according to each analytic method and find the motor to satisfy the design criteria of the maximum stress and deformation.