• Title/Summary/Keyword: transient cooling

Search Result 244, Processing Time 0.026 seconds

Effects of Experimental Variables on the Measurement $T_{cv}$ of Crystalline slags (결정슬래그의 $T_{cv}$ 측정 시 실험변수에 따른 영향)

  • Kim, Yu-Na;Oh, Myong-Sook S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.254-257
    • /
    • 2008
  • For crystalline slags, of which the viscosity rapidly increases at $T_{cv}$ due to the formation of crystalline phases, the Tcv is affected by measurement conditions. In this study, we investigated the effect of cooling rate, and alumina dissolution on the determination of $T_{cv}$. Using synthetic slag samples based on the composition of Alaska Usibelli slag, $T_{cv}$ were determined under a constant cooling rate of $2^{\circ}C$/min, and under rapid cooling with holding time to allow the slag to reach thermal and rheological equilibrium. The effect of alumina dissolution was investigated using platinum lined crucibles. The constant cooling resulted in lower $T_{cv}$ by $33^{\circ}C$ as compared to the equilibrium measurements. Under $2^{\circ}C$/min cooling, the blocking alumina dissolution resulted in lower $T_{cv}$ by $23^{\circ}C$. When the $T_{cv}$ was measured under $2^{\circ}C$/min cooling using an alumina crucible, therefore, the effects of a constant cooling is somewhat offset by the alumina dissolution effect, and bring the measured value closer to the true value.

  • PDF

Effects of Cooling Flow Rate on Gas Foil Thrust Bearing Performance (냉각 유량이 가스 포일 스러스트 베어링의 성능에 미치는 영향)

  • Sung Ho Hwnag;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.76-80
    • /
    • 2023
  • This paper describes an experimental investigation of the effect of cooling flow rate on gas foil thrust bearing (GFTB) performance. In a newly developed GFTB test rig, a non-contact type pneumatic cylinder provides static loads to the test GFTB and a high-speed motor rotates a thrust runner up to the maximum speed of 80 krpm. Force sensor, torque arm connected to another force sensor, and thermocouples measures the applied static load, drag torque, and bearing temperature, respectively, for cooling flow rates of 0, 25, and 50 LPM at static loads of 50, 100, and 150 N. The test GFTB with the outer radius of 31.5 mm has six top foils supported on bump foil structures. During the series of tests, the transient responses of the bearing drag torque and bearing temperature are recorded until the bearing temperature converges with time for each cooling flow rate and static load. The test data show that the converged temperature decreases with increasing cooling flow rate and increases with increasing static load. The drag torque and friction coefficient decrease with increasing cooling flow rate, which may be attributed to the decrease in viscosity and lubricant (air) temperature. These test results suggest that an increase in cooling flow rate improves GFTB performance.

A study on the transient characteristics during speed up of inverter heat pump (회전수 상승폭 변화에 따른 인버터열펌프의 비정상 운전특성)

  • 황윤제;김호영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.495-507
    • /
    • 1998
  • The transient characteristics of a 4.0㎾ inverter driven heat pump was investigated by theoretical and experimental studies. The heat pump used in this study consists of a high side scroll compressor and $\Phi$7 compact heat exchangers with two capillary tubes. A series of tests was peformed to examine the transient characteristics of heat pump in heating and cooling mode when the operating speed was varied from 30Hz to 102Hz. One of the major issues that has not been addressed so far is transient characteristics during speed modulation. A cycle simulation model has been developed to predict the cycle performance under frequency rise-up conditions, and the results of theoretical study were compared with the results of experimental study. The theoretical model was driven from mass conservation and energy conservation equations to predict the operation points of refrigerant cycle and the performances at various operating speeds. For transient conditions, the simulated results are in good agreement with the experimental results within 10%. The transient cycle migration of the liquid state refrigerant causes a significant dynamic change in system. Thus, the migration of refrigerant is the most important factor whenever An experimental analysis is performed or A simulation model is developed.

  • PDF

Transient analysis of point defect dynamics in czochralski-grown silicon crystals

  • Wang, Jong-Hoe;Oh, Hyun-Jung;Park, Bong-Mo;Lee, Hong-Woo;Yoo, Hak-Do
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.6
    • /
    • pp.259-263
    • /
    • 2001
  • The continuum model of transient point defect dynamics to predict the concentrations of interstitial and vacancy is established by estimating expressions for the thermophysical properties of intrinsic point defects. And the point defect distribution in a Czochralski-grown 200 mm silicon crystal and the location of oxidation-induced stacking fault ring(OiSF-ring) created during the cooling of crystals are calculated by using the numerical analysis. The purpose of this paper is to show that his approach lead to predictions that are consistent with experimental results. Predicted point defect distributions by transient point defect dynamic analysis are in good qualitative agreement with experimental data under widely and abruptly varying crystal pull rates when correlated with the position of the OiSF-ring .

  • PDF

Analysis of Transient Characteristics of a Steam Power Plant System (증기발전 시스템의 과도상태 특성 해석)

  • Park, Keun-Han;Kim, Tong-Seop;Ro, Sung-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.967-975
    • /
    • 2000
  • Transient characteristics of a boiler and turbine system for a steam power plant are simulated. One-dimensional unsteady models are introduced for each component. An interaction between boiler and turbine and a control of the water level in the drum are taken into account. Transient responses of the system to the variations of main system variables such as fuel and air flow rate, cooling water injection rate at the attemperator, gas recirculation rate at the furnace and opening of the turbine control valve are examined. Effect of fluid inertia and tube wall thermal inertia on predicted dynamic behavior is investigated.

Experimental and Theoretical Studies on the Dynamic Characteristics During Speed Down of Inverter Heat Pump

  • Hwang, Yoon-Jei;Kim, Ho-Young
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.29-39
    • /
    • 2000
  • A series of tests were performed to verify the transient characteristics of heat pump in heating and cooling mode when operating speed was varied over the 30 to 102Hz. One of the major issues that has not been addressed so far is transient characteristics during speed modulation. The model for cycle simulation has been developed to predict the cycle performance under conditions of decreasing drive frequency and the results of the theoretical study were compared with the results of the experimental study. The simulated results were in good agreement with the experimental result within 10%. The transient cycle migration of the liquid state refrigerant causes significant dynamic change in system. Thus, the migration of refrigerant was the most important factor whenever do experimental results analysis or develop simulation model.

  • PDF

Thermal Management of Proton Exchange Membrane Fuel Cell (고분자막전해질 연료전지의 열관리)

  • Yu, Sang-Seok;Kim, Han-Seok;Lee, Sang-Min;Lee, Young-Duk;Ahn, Kook-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.3
    • /
    • pp.292-300
    • /
    • 2007
  • A dynamic system model of a proton exchange membrane fuel cell(PEMFC) has been developed. The PEMFC of this study has large active area with water cooling in order to simulate the performance of the commercially viable PEMFC system for the transportation. A PEMFC stack model is a transient thermal model which is respond to the dynamic change of the coolant temperature and the flow rate. The dynamic cooling system model has been developed to determine the coolant flow rate and the coolant temperature. Prior to the system level study, thermal management criteria have been set up and brought to the control command of the cooling system. Since the system model is designed to evaluate the effect of thermal management on the system performance, it is attempted to determine the proper control algorithm of the cooling system so that the PEMFC system is working on the thermal management criteria. As a result of simulation, feedback controlled cooling system consumes less power and produce more power comparing with that of conventionally controlled cooling system.

Mathematical Models of a Transformer Cooling System for the Control Algorithm Development (제어알고리즘 개발을 위한 변압기 냉각시스템의 수학적모델)

  • Han, Do-Young;Noh, Hee-Jeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.70-77
    • /
    • 2010
  • In order to improve the efficiency of a main transformer in a train, the optimal operation of a cooling system is necessary. For the development of optimal control algorithms of a cooling system, mathematical models of a main transformer cooling system were developed. These include static and dynamic models of a main transformer, an oil pump, an oil cooler, and a blower. Static models were used to find optimal oil temperatures of the inlet and the outlet of a transformer. Dynamic models were used to predict transient performances of control algorithms of a blower and an oil pump. Simulation results showed good predictions of the static and the dynamic behavior of a main transformer cooling system. Therefore, mathematical models developed in this study may be effectively used for the development of control algorithms of a main transformer cooling system.

Radiation mechanism of gamma-ray burst prompt emission

  • Uhm, Z. Lucas;Zhang, Bing
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.49.3-50
    • /
    • 2015
  • Synchrotron radiation of relativistic electrons is an important radiation mechanism in many astrophysical sources. In the sources where the synchrotron cooling timescale is shorter than the dynamical timescale, electrons are cooled down below the minimum injection energy. It has been believed that such fast-cooling electrons have a power-law distribution in energy with an index -2, and their synchrotron radiation has a photon spectral index -1.5. On the other hand, in a transient expanding astrophysical source, such as a gamma-ray burst (GRB), the magnetic field strength in the emission region continuously decreases with radius. Here we study such a system, and find that in a certain parameter regime, the fast-cooling electrons can have a harder energy spectrum. We apply this new physical regime to GRBs, and suggest that the GRB prompt emission spectra whose low-energy photon spectral index has a typical value -1 could be due to synchrotron radiation in this moderately fast-cooling regime.

  • PDF

The Effect on the Heating and Cooling Load of Building by Slat Angle Variation of Venetian Blind (베네치안 블라인드의 슬래트 각도변화가 건물의 냉난방 부하에 미치는 영향)

  • Cho, S.H.;Shin, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.171-183
    • /
    • 1995
  • Generally, among many kinds of shading devices such as venetian blind, sunscreen, louver and curtain, venetian blind is using widely because the mechanism is so simple and easy to use solar insolation by controlling the slat angle. Analysis of time dependent heat transfer through the window with venetian blind is very important in order to use it effectivly. Therefore, in this study, theoretical thermal analysis method was developed to analyze time dependent heat transfer through a double pane window with and without venetian blind, and was made one module of TRNSYS(A Transient Simulation Program)program. By this way, it was analyzed that how much the variation of slat angle, slat colour and slat absorptivity of venetian blind would be affected on the heating and cooling load of building, and also which colour and angle of slat was optimal for the heating and cooling load of building.

  • PDF