• Title/Summary/Keyword: transgenic potato

Search Result 120, Processing Time 0.027 seconds

Genetic Transformation of Intact Potato Microtuber by Particle Bombardment (Particle Bombardment 방법을 이용한 인공 씨감자의 형질전환)

  • Choi, Kyung-Hwa;Jeon, Jae-Heung;Kim, Hyun-Soon;Jung, Young-Hee;Im, Yong-Pyo;Jung, Hyuk
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.2
    • /
    • pp.87-91
    • /
    • 1997
  • In vitro grown microtubers of potato (cv Jaju) were used for introduction of herbicide resistance gene using bombardment with DNA-coated particles. The apical shoot-tip area of newly sprouted microtubers were intensively bombarded. After bombardment, microtubers were germinated and transplanted in a greenhouse. Northern blot analysis indicated that bar gene was expressed in two plantlets. After 5 weeks of growing, commercial herbicide Basta was sprayed to screen the resistant plants. All untransformed potato plants died after 7 days while two transgenic plants survived.

  • PDF

New Antisense RNA Systems Targeted Against Plant Pathogens

  • Matousek, J.;Vrba, L.;Kuchar, M.;Pavingerova, D.;Orctova, L.;Ptacek, J.;Schubert, J.;Steger, G.;Beier, H.;Riesner, D.
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.379-385
    • /
    • 2000
  • tRNA and 7SL RNA based antisense vehicles were prepared by inserting conserved anti-viral and anti-viroid domains. Anti-PVS coat protein leader sequence (ACPL) and antistructural antihairpin domain of PSTVd (AHII) were inserted in tRNA cassette; anti- zing finger domain of PVS, AHII and anti hop latent viroid ribozyme were inserted in 7SL RNA gene isolated from A. thaliana. These constructs were shown to be transcribed both, in in vitro and in in vivo conditions. However, it followed from our work that closely linked position of PoIII reference genes and PoIIII antisense genes within T-DNA lead to the impairment of RNA expression in transgenic plants. To assay in vivo transcription of antisense genes, hairy root potato cultures were established using h. tumefaciens A4-24 bearing both, Ri plasmid and PoIII-promoterless plant expression vectors with antisense RNA genes. Expression of antisense RNA in transgenic potato tissues was proven by specific RT-PCR reactions.

  • PDF

Resistance Characteristics of Flue-cured Tobacco Plants Transformed with CDNA of Potato Virus Y Replicase Gene (감자 바이러스 Y 복제유전자 cDNA로 형질전환된 황색종 담배의 저항성 특성)

  • 박은경;백경희;유진삼;조혜선;강신웅;김영호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.19 no.1
    • /
    • pp.11-17
    • /
    • 1997
  • A flue-cured tobacco variety (Nicotiana tabacum cv. Wisconsin) was used for Plant transformation with the complementary DNA (cDNA) of potato virus Y-necrosis strain (PVY-VN) replicase gone (Nb) which was synthesized through reverse-transcription Primed with oligo(dT) and Polymerization using RNase H-digested template. The cDNA was cloned into Plant expression vector Plasmid (PMBP2), and introduced into tobacco plants by co-culturing tobacco leaf disks with Agrobacterium tumefaciens LBA4404 containing the plasmid before Plant regeneration. Eight Plants, in which the inserted cDNA fragment was detected by Polymerase chain reaction (PCR), out of 70 putative transformants inserted with sense-oriented Mb cDNA showed no symptom at 3 weeks after inoculation, while the other 62 plants, and all plants with vector gone only and antisense-oriented NIb cDNA had susceptible vein-necrosis symptoms. However, only 2 of the 8 resistant plants were highly resistant, which remained symptomless up to 10 weeks after inoculation. Among the first progenies (T1) from self-fertilized seeds of the two resistant transgenic plants, less than 10 % of 71 plants appeared highly resistant (with no symptom), 70% moderately resistant (with mild symptoms on 1 - 2 leaves), and about 20% susceptible (with susceptible symptoms on 3 or more leaves) at 3 weeks after inoculation. These results suggest that the PVY resistance was inherited in the 71 generation. Key words : potato virus Y. viral replicase gene, transgenic tobacco Plants, resistance.

  • PDF

RNA silencing-mediated resistance is related to biotic / abiotic stresses and cellular RdRp expression in transgenic tobacco plants

  • Wu, Xiao-Liang;Hou, Wen-Cui;Wang, Mei-Mei;Zhu, Xiao-Ping;Li, Fang;Zhang, Jie-Dao;Li, Xin-Zheng;Guo, Xing-Qi
    • BMB Reports
    • /
    • v.41 no.5
    • /
    • pp.376-381
    • /
    • 2008
  • The discovery of RNA silencing inhibition by virus encoded suppressors or low temperature leads to concerns about the stability of transgenic resistance. RNA-dependent RNA polymerase (RdRp) has been previously characterized to be essential for transgene-mediated RNA silencing. Here we showed that low temperature led to the inhibition of RNA silencing, the loss of viral resistance and the reduced expression of host RdRp homolog (NtRdRP1) in transgenic T4 progeny with untranslatable potato virus Y coat protein (PVY-CP) gene. Moreover, RNA silencing and the associated resistance were differently inhibited by potato virus X (PVX) and tobacco mosaic virus (TMV) infections. The increased expression of NtRdRP1 in both PVX and TMV infected plants indicated its general role in response to viral pathogens. Collectively, we propose that biotic and abiotic stress factors affect RNA silencing-mediated resistance in transgenic tobacco plants and that their effects target different steps of RNA silencing.

Transformation of Potato using the Phosphinothricin Acetyltransferase Gene as the Selectable Marker Gene (감자의 형질전환을 위한 표지유전자로서 Phosphinothricin Acetyltransferase 유전자의 이용)

  • Jeong, J.H.;Yang, D.C.;Bang, K.S.;Han, S.S.
    • Korean Journal of Weed Science
    • /
    • v.18 no.3
    • /
    • pp.205-213
    • /
    • 1998
  • This experiment was carried out to produce herbicide resistant potatoes hawing only chimeric phosphinothricin acetyltransferase (PAT) genes without using antibiotic selectable marker. The pDY502 vector having only PAT gene was reconstructed for transformation of potato. The reconstructed vector was introduced to Agrobacterium tumefaciens MP90 disarmed, and they were used for potato transformation. Hormonal requirement for plant regeneration from leaves and stem explants of potato was investigated. From this experiment, MS medium treated with IBA 0.1 mg/L + BA 0.5 mg/L was the best for potato regeneration, and the ratio of shoot regeneration was 54% for leaf and 46% for stem in that condition. For transformation, explants of potato leaves and stems were cocultured with A. tumefaciens MP90 containing reconstructed vector harvoring only PAT gene. When the potato explants were placed on various concentrations of bialaphos and all the potato explants were dead on medium with over 5.0mg/L bialaphos. By this selection methods, the explants cocultured with Agrobacterium produced the putative transgenic shoots on medium with 5mg/L bialaphos treatment after 3-4 weeks. Second selection was performed by transferring the shoot tips of putative transgenic to medium containing 20mg/L of bialaphos. The shoot tips grew well on the second selection medium, indicating the production of successful transgenic plants. But normal shoots were dead in same cytotoxic medium. Incorporation of the PAT gene into transgenic potatos were confirmed by PCR analysis of DNA and Southern hybridization. These results show that the PAT gene can serve as a selectable marker and herbicide resistant genes for transformation of potato.

  • PDF

Cholera Toxin B Subunit-Porphyromonas gingivalis Fimbrial Antigen Fusion Protein Production in Transgenic Potato

  • Lee, Jin-Yong;Kim, Mi-Young;Jeong, Dong-Keun;Yang, Moon-Sik;Kim, Tae-Geum
    • Journal of Plant Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.268-274
    • /
    • 2009
  • Porphyromonas gingivalis, the gram-negative anaerobic oral bacterium, initiates periodontal disease by binding to saliva-coated oral surface. The cholera toxin B subunit (CTB) genetically linked to FimA1 (1-200 aa) or FimA2 (201-337 aa) of the P. gingivalis fimbrial antigen were introduced into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation method. The integration of CTB-FimA1 or CTB-FimA2 fusion genes were confirmed in the chromosome of transformed leaves by genomic DNA PCR amplification method. Synthesis and assembly of the CTB-FimA fusion proteins into oligomeric structures with pentamer size was detected in transformed tuber extracts by immunoblot analysis. The binding activities of CTB-FimA fusion proteins to intestinal epithelial cell membrane receptors were confirmed by GM1-ganglioside enzyme-linked immunosorbent assay (GM1-ELISA). The ELISA showed that the expression levels of the CTB-FimA1 or CTB-FimA2 fusion proteins were 0.0019, 0.002% of the total soluble protein in transgenic tuber tissues, respectively The synthesis of CTB-FimA monomers and their assembly into biologically active oligomers in transformed potato tuber tissues demonstrates the feasibility of using edible plants for the production of enterocyte targeted fimbrial antigens that could elicit mucosal immune responses.

Transformation of Rice (Oryza sativa L.) with Sucrose Transporter cDNA from Potato (Solanum tuberosum L.) (감자 Sucrose Transporter 유전자의 벼 Genome 내로의 도입)

  • 백소현;유남희;윤성중
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.2
    • /
    • pp.97-101
    • /
    • 2001
  • The transport and allocation of photosynthetic assimilate is an important regulatory factor in plant productivity, In order to modify assimilate partitioning in rice, transgenic plants containing a potato sucrose transporter (SuT) gene were developed. Calli derived from rice seeds (Oryza sativa L. cv Dongjin) were cocultured with A. tumefaciens LBA 4404 harboring the SuT gene. Calli were transferred to MS medium supplemented with 50 mg/L hygromycin, 500 mg/L carbenicillin, 2 mg/L kinetin, 0.1 mg/L NAA. After 2 weeks, hygromycin resistant shoots were obtained from the calli on the selection medium. Roots were induced from the putative transgenic shoots on rooting MS medium supplemented with 250 mg/L cabenicillin. Plant regeneration rate from the calli was about 150%. Stable incorporation of the potato SuT gene into rice genomic DNA was confirmed by PCR and Southern blot analysis.

  • PDF

Transformation of Plant Cells by Gene Transfer : Construction of a Chimeric Gene Containing Deleted Maize Alcohol Dehydrogenase Intron and ${\beta}-Glucuronidase$ Gene and Its Expression in Potato (유전자 도입에 의한 식물세포의 형질전환 : 옥수수 알코올 탈수소효소 유전자의 절단된 인트론 및 ${\beta}-Glucuronidase$ 유전자를 함유하는 키메라 유전자의 제조와 감자에서의 발현)

  • 이광웅
    • Journal of Plant Biology
    • /
    • v.35 no.3
    • /
    • pp.237-245
    • /
    • 1992
  • To understand the properties of the cauliflower mosaic virus (CaMV) 35S promoter and the effect of the deleted maize alcohol dehydrogenase I-S (Adhl-S) intron 1 on the expression of the CaMV $35S{\beta}-glucuronidase$ (GUS) gene in potato (Solanum tuberosum L. cv. Superior), we constructed a chimeric gene and transferred it into potato with Agrobacterium tumefaciens mediated method. The pLS201, a gene transfer vector of 17.7 kilobase pairs, was composed of the CaMV 35S promoter, the 249 base pairs of deleted maize Adhl-S intron 1, the GUS reporter gene, and the kanamycin resistance gene as a selectable marker for transformation. The GUS activity was examined by histochemical and spectrophotometric assay in transformed potato plants. The GUS activity was found primarily around the vascular tissue cells in stem and root. In the spectorophotometric assay, the level of GUS activity of transgenic potato transformed with CaMV 35S/249 bp of intron 1 fragment-GUS (pLS201) was compared with that of potato transformed with CaMV 35S-GUS (pBI121). The quantitative spectrophotometric assay showed that the level of GUS activity in potato transformed with pLS201 was higher in leaf, stem and root by 30-, 34- and 42-fold, respectively than those in potato transformed with pBI121. This results indicate that the inclusion of the deleted maize Adhl-S intron 1 resulted in increament of the GUS gene expression in transgenic potato.potato.

  • PDF

Expression of diligent protein and Pinoresinol/Lariciresinol reductase genes of forsythia in transgenic potatoes

  • Chuong, Tran-Van;Kim, Hyun-Soon;Park, Ji-Young;Joung, Jae-Youl;Youm, Jung-Won;Jeon, Jae-Heung
    • Plant Resources
    • /
    • v.4 no.3
    • /
    • pp.181-188
    • /
    • 2001
  • We tried to introduce two forsythia genes related in lignan biosynthesis, dirigent protein and pinoresinol/lariciresinol (Ph) reductase, into potatoes for accumulation of lignans in transgenic potatoes. We made binary vectors overexpressing dirigent protein gene and P/L reductase gene driven by a CaMV35S promoter and transformed into potatoes via Agrobacterium mediated transformation. And in order to control the metabolic flux of lignan biosynthesis pathway, we tried to inhibit chalcone synthase genes of potatoes by antisense inhibition technique also. We tried to use PCR screening method for selection of transgenic plants of different vectors. We tried to determine and compare lignan contents from different transgenic potato lines.

  • PDF

Modification of Carbohydrate Metabolism in Transgenic Potato

  • Heyer, Arnd G.
    • Journal of Plant Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.13-19
    • /
    • 2000
  • Carbohydrates serve three different principal functions in the metabolism of plants. They are the primary products of energy fixation, they are important transport metabolites, and they are deposited as structural or storage compounds. Modification of carbohydrate metabolism therefore covers approaches to modify yield, to change sink/source relationships and thereby alter the ratio of harvestable material, and to improve the quality of crop plants. The scope of this article is to summarize research done at the Max-Planck-Institute related to the first two fields and to present in some detail what we learned, when we established a new carbohydrate storage form in potato.

  • PDF