• Title/Summary/Keyword: transgenic forage

Search Result 48, Processing Time 0.027 seconds

Increased Thermotolerance of Transgenic Rice Plant by Introduction of Thermotolerant Gene

  • Lee, Byung-Hyun;Won, Sung-Hye;Kim, Ki-Yong;Lee, Hyoshin;Jinki Jo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.2
    • /
    • pp.97-102
    • /
    • 2000
  • To increase thennotolerance of forage crops, transgenic rice plants as a model for transformation of monocots were generated. A cDNA encoding the chloroplast-localized small heat shock protein (small HSP) of rice, Oshsp21, was introduced into rice plants via Agrobacterium-mediated gene transfer system. Calli induced from scutella were co-cultivated with a A. tumefaciens strain EHAlOl canying a plasmid, pIGhsp21. A large number of transgenic plants were regenerated on a medium containing hygromycin. Integration of Oshsp2l gene was confirmed by PCR and Southern blot analyses with genomic DNA. Northern blot and immunoblot analyses revealed that the Oshsp21 gene was constitutively expressed and accumulated as mature protein in transgenic plants. Effects of constitutive expression of the OshspZl on thermotolerance were first probed with the chlorophyll fluorescence. Results indicate that inactivation of electron transport reactions in photosystem I1 (PSII), were mitigated by constitutive expression of the Oshsp21. These results suggest that the chloroplast small HSP plays an important role in protecting photosynthetic machinery during heat stress. (Key words : Thermotolerance, Rice, Transgenic, cDNA)

  • PDF

Transformation of Birdsfoot trefoil by BcHSP17.6 Gene using Agrobacterium tumefaciens (BcHSP17.6 유전자 도입에 의한 버즈풋 트레포일의 형질전환)

  • 김기용;성병렬;임용우;최기준;임영철;장요순;정의수;김원호;김종근
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.3
    • /
    • pp.145-150
    • /
    • 2001
  • This study was conducted to obtain the transformed birdsfoot trefoil (Lotus corniculatus L.) plants with BcHSP17.6 gene using Agrobacterium turnefaciens LBA4404 and we confirmed transformed gene from the regenerated birdsfoot trefoil plants. The expression vector, pBKH4 vector, harboring BcHSP17.6 gene was used for production of transgenic birdsfoot trefoil plants. The callus of birdsfoot trefoil was cocultivated with Agrobacteriurn turnefaciens and transformed calli were selected on kanamycin-containing SH-kc medium to regenerate into plants. The transformed birdsfoot trefoil plants were produced 4 momths after cultivation on BOi2Y medium. The transgenic birdsfoot trefoil plants were analyzed by isolation of genomic DNA and genomic Southern hybridization using a -32P labelled BcHSPl7.6 fragments. (Key words : Birdsfoot trefoil, Transgenic plant. BcHSP17.6 gene, Callus induction, Plant regeneration)

  • PDF

Growth Performance and Field Evaluation of Herbicide-Resistant Transgenic Creeping Bentgrass

  • Lee, Ki-Won;Lee, Byung-Hyun;Seo, Bo-Ram;Kim, Jin-Seog;Lee, Sang-Hoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.167-170
    • /
    • 2013
  • This study examined the growth performance and field evaluation of the dual herbicide-resistant transgenic creeping bentgrass plants. The effect of glyphosate treatment on the herbicide resistance of the transgenic creeping bentgrass plants was determined, and the non-transgenic control plant withered at the concentration $11{\mu}g/mL$ or higher whereas the transgenic creeping bentgrass plants survived the treatment at the concentration of $3,000{\mu}g/mL$, and the increase of the plant length was repressed as the glyphosate treatment concentration was increased. At field evaluation, glufosinate-ammonium and glyphosate were simultaneously treated to investigate the weed control effect. The results showed that more than 90% of the weeds withered four week after herbicide treatment, while the transgenic creeping bentgrass plants continued to grow normally. Therefore, the dual herbicide-resistant creeping bentgrass plants may be able to greatly contribute to the efficiency of weed control and to the economic feasibility of mowing in places such as golf courses.

Improvement of Forage Crop Yield and Retardation of Leaf Senescence by Introduction of Gene for Cytokinin Synthetase into Plants (Cytokinin 합성효소의 도입에 따른 형질전환 식물체의 노화 지연 및 수량의 증가)

  • Lee, B.H.;Won, S.H.;Lee, H.S.;Kim, K.Y.;Kim, M.H.;Eun, S.J.;Jo, J.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.3
    • /
    • pp.281-290
    • /
    • 1999
  • The bacterial isopentenyl transferase (ipt) gene involved in cytokinin biosynthesis was fused with 35S promoter of cauliflower mosaic virus (CaMV) and introduced into tobacco plants (Nicotiana tabacum L. cv. Samsun) via Agrobacterium-mediated transformation. As expected, ipt gene was constitutively expressed in all tissues of transgenic plants. Several primary transgenic plants were obtained that expressed different level of transcripts for ipt gene. Three of transgenic plants with different expression level of ipt gene were selected and selfed to obtain homozygous line for further analysis. A number of interesting phenotypic changes such as viviparous leaves, delayed senescence, larger axillary shoots, an abundance of tiny shoots at the apex and a release of lateral buds, were observed in transgenic plants. Chlorophyll content was 1.5- t.o 4-fold higher in transgenic plants as compared with non-transformed plants. These results indicate that the cytokinin synthesized in transgenic plants could improve forage crop yield by delay of leaf senescence and increase of leaf number.

  • PDF

Transgenic Expression of MsHsp23 Confers Enhanced Tolerance to Abiotic Stresses in Tall Fescue

  • Lee, Ki-Won;Choi, Gi-Jun;Kim, Ki-Yong;Ji, Hee-Jung;Park, Hyung-Soo;Kim, Yong-Goo;Lee, Byung-Hyun;Lee, Sang-Hoon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.818-823
    • /
    • 2012
  • Tall fescue (Festuca arundinacea Schreb.) is an important cool season forage plant that is not well suited to extreme heat, salts, or heavy metals. To develop transgenic tall fescue plants with enhanced tolerance to abiotic stress, we introduced an alfalfa Hsp23 gene expression vector construct through Agrobacterium-mediated transformation. Integration and expression of the transgene were confirmed by polymerase chain reaction, northern blot, and western blot analyses. Under normal growth conditions, there was no significant difference in the growth of the transgenic plants and the non-transgenic controls. However, when exposed to various stresses such as salt or arsenic, transgenic plants showed a significantly lower accumulation of hydrogen peroxide and thiobarbituric acid reactive substances than control plants. The reduced accumulation of thiobarbituric acid reactive substances indicates that the transgenic plants possessed a more efficient reactive oxygen species-scavenging system. We speculate that the high levels of MsHsp23 proteins in the transgenic plants protect leaves from oxidative damage through chaperon and antioxidant activities. These results suggest that MsHsp23 confers abiotic stress tolerance in transgenic tall fescue and may be useful in developing stress tolerance in other crops.

Transformation of Orchardgrass (Dactylis glomerata L.) with Glutathione Reductase Gene (Glutathione Reductase 유전자의 도입에 의한 오차드그래스의 형질전환)

  • 이효신;배은경;김기용;원성혜;정민섭;조진기
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • To develop transgenic orchardgrass resistant to reactive oxygen species produced from environmental stresses, a vector with the cytosolic glutathione reductase cDNA (BcGRl) from Chinese cabbage was constructed under the control of the cauliflower mosaic virus 35S promoter and was introduced into orchardgrass using Agrobacterium tumefaciens EHA101. Transgenic plants from hygromycin-selected calli of orchardgrass did not show any morphological difference from wild-type plants. The results of PCR amplification and genomic Southern blot analysis confirmed the integration of foreign gene into the chromosome of transgenic orchardgrass. Northern blot analysis with total RNA from leaves also confirmed the constitutive expression of BcGR1 in transgenic orchardgrass.

  • PDF

Comparison of Agrobacterium-mediated of Five Alfalfa (Medicago sativa L.) Cultivars Using the GUS Reporter Gene

  • Lee, Sang-Hoon;Kim, Ki-Yong;Park, Hyung Soo;Cha, Joon-Yung;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.3
    • /
    • pp.187-192
    • /
    • 2014
  • Alfalfa (Medicago sativa L.) is one of the most important forage legumes in the world. It has been demanded to establish the efficient transformation system in commercial varieties of alfalfa for forage molecular breeding and production of varieties possessing new characteristics. To approach this, genetic transformation techniques have been developed and modified. This work was performed to establish conditions for effective transformation of commercial alfalfa cultivars, Xinjiang Daye, ABT405, Vernal, Wintergreen and Alfagraze. GUS gene was used as a transgene and cotyledon and hypocotyl as a source of explants. Transformation efficiencies differed from 0 to 7.9% among alfalfa cultivars. Highest transformation efficiencies were observed in the cultivar Xinjiang Daye. The integration and expression of the transgenes in the transformed alfalfa plants was confirmed by polymerase chain reaction (PCR) and histochemical GUS assay. These data demonstrate highly efficient Agrobacterium transformation of diverse alfalfa cultivars Xinjiang Daye, which enables routine production of transgenic alfalfa plants.

Development of High Quality Forage Grass by Down-regulating Lignin Biosynthetic Gene (리그닌 생합성관련 유전자의 발현조절에 의한 고품질 목초 개발)

  • Woo Hyun-Sook;Yun Jung-Woo;Lee Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • To develop a new variety of orchardgrass with improved digestibility, caffeic acid O-methyltransferase (Dgcomt), which is a methylation enzyme involved in the early stages of lignin biosynthesis, was isolated and characterized. Dgcomt was expressed not only in leaves but also in stems and roots. The expression levels of transcripts were high in stems and roots which are the most lignified tissues, and only moderate levels of transcripts were expressed in leaves. To develop transgenic orchardgrass plants by down-regulating the Dgcomt gene, an RNAi suppression vector with partial Dgcomt DNA fragment was constructed and transferred into the genome of orchardgrass via Agrobacterium-mediated gene transfer method. PCR and Southern blot analyses with genomic DNAs from putative transgenic plants revealed that the T-DNA region containing RNAi construct was successfully integrated into the genome of orchardgrass. Northern blot analysis revealed that the majority of the down-regulated transgenic lines showed significant reduction in Dgcomt gene expression. These RNAi transgenic orchardgrass will be useful for molecular breeding of new variety with improved digestibility by down-regulating lignin biosynthetic enzyme.

Production of Transgenic Goats by Sperm-mediated Exogenous DNA Transfer Method

  • Zhao, Yongju;Wei, Hong;Wang, Yong;Wang, Lingbin;Yu, Mingju;Fan, Jingsheng;Zheng, Shuangyan;Zhao, Cong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.1
    • /
    • pp.33-40
    • /
    • 2010
  • In this study, the production of transgenic goats using sperm to integrate exogenous DNA and artificial insemination (AI) was carried out and the technical protocols for sperm-mediated gene transfer (SMGT) in the goat were optimized. The standard sperm parameters and the ability to bind foreign genes were assessed to select suitable sperm donor bucks. A total of 134 oestrous does were divided into 4 groups and inseminated using different methods and sperm numbers. The does of Groups I to III were inseminated with fresh semen ($1-2\times10^{7}$ and $10^{6}$ sperm) or frozen-thawed semen ($10^{6}$ sperm), respectively, through conventional intra-cervical AI, and the does of Group IV with frozen-thawed semen ($10^{6}$ sperm) through intrauterine AI. Total genomic DNAs were extracted from ear biopsies of the offspring. The presence of $pEGFP-N_{1}$ DNA was screened by PCR and then by Southern blotting analysis. A total of 76 live kids were produced and 8 kids were tested transgene positive on the basis of agarose gel electrophoresis of the PCR-amplified fragment. Southern blotting analysis of the samples showed 5 positive kids. A transgenic ratio of 10.53% was detected using PCR and 6.58% using Southern blotting. The positive kid rate assayed by PCR and Southern blotting of frozen-thawed goat semen was 3.61% and 9.27% higher than that of untreated semen. The results show that transgenic goats can be produced efficiently by the method of artificial insemination using sperm cells to integrate the exogenous DNA and intrauterine insemination allowed low numbers of DNA-transfected spermatozoa to be used, with satisfactory fertility.

Advances in the molecular breeding of forage crops for abiotic stress tolerance

  • Alam, Iftekhar;Kim, Kyung-Hee;Sharmin, Shamima Akhtar;Kim, Yong-Goo;Lee, Byung-Hyun
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.425-441
    • /
    • 2010
  • Forages are the backbone of sustainable agriculture. They includes a wide variety of plant species ranging from grasses, such as tall fescue and bermudagrass, to herbaceous legumes, such as alfalfa and white clover. Abiotic stresses, especially salinity, drought, temperature extremes, high photon irradiance, and levels of inorganic solutes, are the limiting factors in the growth and productivity of major cultivated forage crops. Given the great complexity of forage species and the associated difficulties encountered in traditional breeding methods, the potential from molecular breeding in improving forage crops has been recognized. Plant engineering strategies for abiotic stress tolerance largely rely on the gene expression for enzymes involved in pathways leading to the synthesis of functional and structural metabolites, proteins that confer stress tolerance, or proteins in signaling and regulatory pathways. Genetic engineering allows researchers to control timing, tissue-specificity, and expression level for optimal function of the introduced genes. Thus, the use of either a constitutive or stress-inducible promoter may be useful in certain cases. In this review, we summarize the recent progress made towards the development of transgenic forage plants with improved tolerance to abiotic stresses.