• 제목/요약/키워드: transforming growth factor-$Factor-{\beta}1$(TGF-$Factor-{\beta}1$)

검색결과 297건 처리시간 0.033초

사람성유아세포의 Transforming growth factor-$\beta$1과 Nitric oxide 생성에 미치는 Helicobacter pylori 항원의 효과 (Effects of Helicobacter pylori Antigen on Producton of Transforming growth factor-$\beta$1 and Nitric oxide in Human Fibroblast)

  • 박무인;박선자;구자영;김광혁
    • 생명과학회지
    • /
    • 제11권2호
    • /
    • pp.181-189
    • /
    • 2001
  • Cytokines are hormone-like proteins which mediate and regulast inflammatory and immune responses. Transforming growth factor -$\beta$1(TGF-$\beta$) plays an important role in the control of the immune response and wound healing, and in the development o various tissues and organs, Nitric oxide(NO) is major messenger molecule regulating immune function and blood vessel dilation and serving as a neurotransmitter in the brain and peripheral nervous system. Also, NO is to be a potent mutagen that cause mutation in the p53 tumor suppressor gene in early phases of human gastric carcinogenesis. The purpose of this study was to investigate the effect of Helicobacter phlori lystes, lipopolysaccharide (LPS), and Staphylococcus enterotoxin B(SEB) on production of TGF-$\beta$1 and NO by human fibroblasts. Primary cultured human fibroblasts were incubated with H. pylori lysates(Hp), LPs, SEB, Hp+LPS, Hp+SEB, Hp+LPS+SEB. Cultured supernatants that were collected at 24, 48 and 72 hr were assessed for TGF-$\beta$1 by enzyme-linked immunosorbent assay and NO production by quantification of nitrite ion. TGF-$\beta$1 production in fibroblasts exposed with Hp, LPS or SEB for 48 hrs was enhanced, but for 72 hrs inhibited. Its production by doble exposure such as Hp+LPS, Hp+SEB, Hp+LPS+SEB was lowered in comparison with single exposure of Hp in cases of 24 and 48 hrs incubation, but for 72 hrs decreased in Hp vaculoating toxin(+), increased in Hp vacuolating toxin(-). No production in fibroblasts increaed at all doses of LPS. But its production by exposure of SEB increased or decreased according to dose and incubation time. Also, NO production by Hp vacuolating toxin(+) increased at all doses, but its production by Hp vacuolating toxin(-) decreased. Its production by doble exposure such as Hp+LPS, Hp+SEB, Hp+LPS+SEB decreased in comparison with single exposure Hp Therefore, quantities pf TGB-$\beta$1 and NO released by human fibroblasts shows differences according to kinds of stimulants. Also, in care stimulated with same kinds of stimulants, its productions exhibit quantitative differences according to exposure times. These results suggest that the decreased of TGF-$\beta$1 in fibroblasts by mixed exposure with Hp producing vacuolating toxin and bacterial toxins such as LPS and SEB may effect negatively in healing of host tissue and increased of NO by infection oh H. pylori may related to the increased susceptibility for human gastric carcinogenesis.

  • PDF

4-O-Methylhonokiol Protects HaCaT Cells from TGF-β1-Induced Cell Cycle Arrest by Regulating Canonical and Non-Canonical Pathways of TGF-β Signaling

  • Kim, Sang-Cheol;Kang, Jung-Il;Hyun, Jin-Won;Kang, Ji-Hoon;Koh, Young-Sang;Kim, Young-Heui;Kim, Ki-Ho;Ko, Ji-Hee;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • 제25권4호
    • /
    • pp.417-426
    • /
    • 2017
  • 4-O-methylhonokiol, a neolignan compound from Magnolia Officinalis, has been reported to have various biological activities including hair growth promoting effect. However, although transforming growth factor-${\beta}$ (TGF-${\beta}$) signal pathway has an essential role in the regression induction of hair growth, the effect of 4-O-methylhonokiol on the TGF-${\beta}$ signal pathway has not yet been elucidated. We thus examined the effect of 4-O-methylhonokiol on TGF-${\beta}$-induced canonical and noncanonical pathways in HaCaT human keratinocytes. When HaCaT cells were pretreated with 4-O-methylhonokiol, TGF-${\beta}1$-induced G1/G0 phase arrest and TGF-${\beta}1$-induced p21 expression were decreased. Moreover, 4-O-methylhonokiol inhibited nuclear translocation of Smad2/3, Smad4 and Sp1 in TGF-${\beta}1$-induced canonical pathway. We observed that ERK phosphorylation by TGF-${\beta}1$ was significantly attenuated by treatment with 4-O-methylhonokiol. 4-O-methylhonokiol inhibited TGF-${\beta}1$-induced reactive oxygen species (ROS) production and reduced the increase of NADPH oxidase 4 (NOX4) mRNA level in TGF-${\beta}1$-induced noncanonical pathway. These results indicate that 4-O-methylhonokiol could inhibit TGF-${\beta}1$-induced cell cycle arrest through inhibition of canonical and noncanonical pathways in human keratinocyte HaCaT cell and that 4-O-methylhonokiol might have protective action on TGF-${\beta}1$-induced cell cycle arrest.

Effects of Circular Type TGF-$\beta$1 Antisense Oligonucleotides on Anti-Thy-1 Glomerulonephritis

  • Han, Sang-Mi;Lee, Kwang-Gill;Yeo, Joo-Hong;Kweon, Hae-Yong;Woo, Soon-Ok;Park, Kwan-Kyu
    • 한국잠사학회:학술대회논문집
    • /
    • 한국잠사학회 2003년도 International Symposium of Silkworm/Insect Biotechnology and Annual Meeting of Korea Society of Sericultural Science
    • /
    • pp.145-146
    • /
    • 2003
  • Overproduction of transforming growth factor (TGF)-$\beta$l has been implicated in the pathogenesis of fibrotic diseases. TGF-$\beta$l plays a crucial role in the accumulation of extracellular matrix (ECM) in human and experimental glomerular diseases. However, it remains unclear whether inhibition of TGF- $\beta$l overproduction would suppress TGF- $\beta$l induced ECM accumulation. To inhibit the overproduction of TGF- $\beta$l in experimental glomerulonephritis induced by anti-Thy 1.1 antibody, we introduced antisense oligodeoxynucleotides (ODN) fur TGF- $\beta$l into the nephritic kidney by the HVJ-liposome-mediated gene transfer method. (omitted)

  • PDF

Transforming Growth Factor Beta-1 C-509T Polymorphism and Cancer Risk: A Meta-analysis of 55 Case-control Studies

  • Liu, Yang;Lin, Xian-Fan;Lin, Chun-Jing;Jin, Si-Si;Wu, Jin-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권9호
    • /
    • pp.4683-4688
    • /
    • 2012
  • Aim: To investigate the association of transforming growth factor-beta 1 (TGF-${\beta}1$) C-509T polymorphism and susceptibility to cancer by means of meta-analysis. Methods: An extensive search was performed to identify eligible case-control studies investigating such a link. The strength of the association between TGF-${\beta}1$ C-509T polymorphism and cancer risk was assessed by pooled odds ratios (ORs) and 95%confidence intervals (95%CIs) in fixed or random effects models. Results: 55 published case-control studies with a total number of 21,639 cases and 28,460 controls were included. Overall, there was no association between TGF-${\beta}1$ C-509T and cancer risk in all genetic comparison models (TT vs. CC: OR=1.01, 95%CI=0.89-1.15; T vs. C: OR=1.01, 95%CI=0.94-1.07). However, a stratified analysis by cancer type indicated -509 T allele was significantly associated with decreased risk of colorectal cancer (CRC) (TT vs. CT/CC: OR=0.85, 95%CI=0.76-0.95), especially for Caucasians (TT vs. CT/CC: OR=0.83, 95%CI=0.71-0.98) and for population-based studies (TT vs. CT/CC: OR=0.78, 95%CI=0.68-0.89). Conclusion: This meta-analysis suggested that TGF-${\beta}1$ C-509T polymorphism might contribute to a decreased risk on colorectal cancer susceptibility, especially for Caucasians.

인간 폐섬유아세포에서 TGF-β 자극에 의한 VEGF 분비 (Transforming growth factor-β promoted vascular endothelial growth factor release by human lung fibroblasts)

  • 박상욱;신주화;심재원;김덕수;정혜림;박문수;심정연
    • Clinical and Experimental Pediatrics
    • /
    • 제51권8호
    • /
    • pp.879-885
    • /
    • 2008
  • 목 적 : 폐섬유아세포는 예전에는 기도의 구조적 세포로만 알려져 왔으나, 최근에는 천식에서 기관지 운동의 톤을 조절할 뿐만 아니라 기도의 면역조절과 기도 개형에서 중요한 역할을 하는 것으로 밝혀지고 있다. VEGF는 혈관 내피세포에서 강력한 작용을 하는 다기능적 사이토카인으로서, 상피내 세포의 세포분열을 유도하고, 상피세포의 투과도를 증가시키며, 상피세포의 이동을 향상시키는 역할을 하는 것으로 알려져 있다. TARC는 Th2 세포의 선택적 이동을 유도하는 케모카인으로 알려져 있다. 본 연구에서는 PDGF와 TGF-${\beta}$로 자극시킨 인간 폐섬유아세포에서 VEGF와 TARC가 생성되는지와 dexamethasone이 폐섬유아세포에서 VEGF의 분비를 억제하는지를 알아보고자 하였다. 또한 폐섬유아세포와 기관지 평활근 세포와 함께 배양했을 때 VEGF 생성에 미치는 효과를 단독배양 시와 비교하였다. 방 법 : 폐섬유아세포와 인간 기관지 평활근세포를 각각 혹은 함께 배양한 뒤 48시간동안 무혈청 배지에서 성장을 정지시킨 후 TGF-${\beta}$ (10 ng/mL)와 PDGF (20 ng/mL)로 자극하였다. 자극 후의 세포 증식 반응과 배양액 상층액의 VEGF, TARC 농도를 측정하여 dexamethasone ($10^{-6}M$)으로 전처치 후 자극한 것과 비교하였다. 결 과 : PDGF와 TGF-${\beta}$로 자극하였을 경우 폐섬유아세포에서 VEGF 분비가 의미있게 증가하였고, 특히 PDGF와 TGF-${\beta}$로 함께 자극하였을 경우 더욱 의미있는 상승을 보였다. Dexamethasone은 폐섬유아세포의 VEGF 분비를 PDGF로 자극한 경우와 PDGF, TGF-${\beta}$ 같이 자극한 경우 모두에서 억제하였다. 인간 기관지 평활근 세포와 폐섬유아세포를 혼합 배양했을 때 VEGF 분비에는 상승적인 효과가 없었다. Dexamethasone은 폐섬유아세포 증식을 억제시키지 않았다. 폐섬유아세포를 PDGF와 TGF-${\beta}$로 자극했을 때 TARC는 분비되지 않았다. 결 론 : 폐섬유아세포는 VEGF 분비를 통해 기도 개형에 관여하며, 기관지 평활근 세포와 함께 배양해도 VEGF 분비에 상승 효과는 없다. Dexamethasone은 VEGF 분비를 억제하였으나 폐섬유아세포의 증식을 억제하지는 못하였다.

탄광부 진폐증에서 혈장 Transforming Growth Factor-${\beta}_1$의 의의 (Clinical Significance of Plasma TGF-${\beta}_1$ in Coal Workers' Pneumoconiosis)

  • 김정주;라원연;홍애라;신표진;용석중;신계철
    • Tuberculosis and Respiratory Diseases
    • /
    • 제50권1호
    • /
    • pp.76-83
    • /
    • 2001
  • 연구배경 : 탄광부 진폐증은 석탄 분진의 흡입에 의한 폐조직의 손상에 대하여 부적절하고 과도한 염증반응이 일어나 폐섬유화를 유발하여 발병하는 것으로 생각되어지고 있다. 이 반응에는 대식세포를 비롯한 많은 염증세포들과 그 세포들에서 분비되는 매개물질들이 중요한 역할을 한다. TGF-$\beta$는 특발성 폐섬유화증, 규폐증 및 석면증의 폐섬유화 과정에 관여한다고 알려져 있다. 그러나 비슷한 기전에 의해 폐 섬유화가 진행되는 것으로 생각되는 탄광부 진폐증에서는 TGF-$\beta$의 관여여부에 대한 보고가 거의 없다. 본 연구는 탄광부 진폐증 환자에서 혈청 TGF-${\beta}_1$을 측정하여 섬유화의 정도에 따른 그 활성도의 변화를 비교하여 탄광부 진폐증의 폐섬유화 과정에 TGF-${\beta}_1$이 관여하는지 알아 보고자 하였다. 방법 : 직업력과 방사선학적 소견 상 탄광부 진폐증으로 진단 된 환자 중 단순 탄광부 진폐증 20예와 복잡성 탄광부 진폐증 20예를 대상으로 하였다. 정상소견인 자 10명을 대조군으로 설정하였으며, 각 대상을 human TGF-${\beta}_1$ immunoassay kit (R&D system, Minneapolis, MN)을 이용하여 혈장 내 TGF-${\beta}_1$을 측정하였다. 결과 : 단순 탄광부 진폐증($0.64{\pm}0.17$ ng/mL)과 정상 대조군($0.63{\pm}0.18$ ng/mL)보다 복잡성 탄광부 진폐증 ($0.79{\pm}0.18$ ng/mL)의 혈중 TGF-${\beta}_1$의 농도가 의미 있게 높았다(p<0.05). 결론 : 탄광부 진폐증의 섬유화 진행 과정에 TGF-${\beta}_1$이 관여함을 알 수 있었다. 따라서 단순 탄광부 진폐증과 복잡성 탄광부 진폐증의 감별진단과 경과 예측인자로서 혈장 TGF-${\beta}_1$이 유용하리라 생각되며, TGF-${\beta}$의 생성을 억제한다면 탄광부 진폐증의 섬유화 진행을 저지함으로써 탄광부 진폐증의 치료에 있어 중요한 역할을 할 수 있을 것으로 기대된다.

  • PDF

Induction of transforming growth factor-beta 1 by androgen is mediated by reactive oxygen species in hair follicle dermal papilla cells

  • Shin, Hyoseung;Yoo, Hyeon Gyeong;Inui, Shigeki;Itami, Satoshi;Kim, In Gyu;Cho, A-Ri;Lee, Dong Hun;Park, Won Seok;Kwon, Ohsang;Cho, Kwang Hyun;Won, Chong Hyun
    • BMB Reports
    • /
    • 제46권9호
    • /
    • pp.460-464
    • /
    • 2013
  • The progression of androgenetic alopecia is closely related to androgen-inducible transforming growth factor (TGF)-${\beta}1$ secretion by hair follicle dermal papilla cells (DPCs) in bald scalp. Physiological levels of androgen exposure were reported to increase reactive oxygen species (ROS) generation. In this study, rat vibrissae dermal papilla cells (DP-6) transfected with androgen receptor showed increased ROS production following androgen treatment. We confirmed that TGF-${\beta}1$ secretion is increased by androgen treatment in DP-6, whereas androgen-inducible TGF-${\beta}1$ was significantly suppressed by the ROSscavenger, N-acetyl cysteine. Therefore, we suggest that induction of TGF-${\beta}1$ by androgen is mediated by ROS in hair follicle DPCs.

Sp1 Decoy Oligodeoxynucleotides에 의한 사구체 혈관간세포 증식억제 효과 (Sp1 Decoy Oligodeoxynucleotides Inhibit Serum-induced Mesangial Cell Proliferation)

  • 채영미;김성영;박관규;장영제
    • KSBB Journal
    • /
    • 제19권5호
    • /
    • pp.335-340
    • /
    • 2004
  • Mesangial expansion caused by cell proliferation and glomerular extracellular matrix accumulation is one of the earliest renal abnormalties observed at the onset of hyperglycemia in diabetes mellitus. Transcription factor Sp1 is implicated in the transcriptional regulation of a wide range of genes participating in cell proliferation, and is assumed to play an essential role in mesangial expansion, transforming growth factor (TGF)-$\beta$1, plasminogen activator inhibitor (PAI)-1. We have generated a phosphorothioated double-stranded Sp1-decoy oligodeoxynucleotide that effectively blocks Sp1 binding to the promoter region for transcriptional regulation of TGF-$\beta$1 and PAI-1. The Sp1 decoy oligodeoxynucleotide suppressed transcription of these cytokines and proliferation of primary rat mesangial cells in response to serum stimulation. These results suggest that the Sp1 decoy oligodeoxynucleotide could bea powerful tool in preventing the pathogenesis of renal hypertrophy.

Transforming growth factor β1 enhances adhesion of endometrial cells to mesothelium by regulating integrin expression

  • Choi, Hee-Jung;Park, Mi-Ju;Kim, Bo-Sung;Choi, Hee-Jin;Joo, Bosun;Lee, Kyu Sup;Choi, Jung-Hye;Chung, Tae-Wook;Ha, Ki-Tae
    • BMB Reports
    • /
    • 제50권8호
    • /
    • pp.429-434
    • /
    • 2017
  • Endometriosis is the abnormal growth of endometrial cells outside the uterus, causing pelvic pain and infertility. Furthermore, adhesion of endometrial tissue fragments to pelvic mesothelium is required for the initial step of endometriosis formation outside uterus. $TGF-{\beta}1$ and adhesion molecules importantly function for adhesion of endometrial tissue fragments to mesothelium outside uterus. However, the function of $TGF-{\beta}1$ on the regulation of adhesion molecule expression for adhesion of endometrial tissue fragments to mesothelium has not been fully elucidated. Interestingly, transforming growth factor ${\beta}1$ ($TGF-{\beta}1$) expression was higher in endometriotic epithelial cells than in normal endometrial cells. The adhesion efficiency of endometriotic epithelial cells to mesothelial cells was also higher than that of normal endometrial cells. Moreover, $TGF-{\beta}1$ directly induced the adhesion of endometrial cells to mesothelial cells through the regulation of integrin of ${\alpha}V$, ${\alpha}6$, ${\beta}1$, and ${\beta}4$ via the activation of the $TGF-{\beta}1/TGF-{\beta}RI/Smad2$ signaling pathway. Conversely, the adhesion of $TGF-{\beta}1-stimulated$ endometrial cells to mesothelial cells was clearly reduced following treatment with neutralizing antibodies against specific $TGF-{\beta}1-mediated$ integrins ${\alpha}V$, ${\beta}1$, and ${\beta}4$ on the endometrial cell membrane. Taken together, these results suggest that $TGF-{\beta}1$ may act to promote the initiation of endometriosis by enhancing integrin-mediated cell-cell adhesion.

Asian Dust Particles Induce TGF-${\beta}_1$ via Reactive Oxygen Species in Bronchial Epithelial Cells

  • Kyung, Sun Young;Yoon, Jin Young;Kim, Yu Jin;Lee, Sang Pyo;Park, Jeong-Woong;Jeong, Sung Hwan
    • Tuberculosis and Respiratory Diseases
    • /
    • 제73권2호
    • /
    • pp.84-92
    • /
    • 2012
  • Background: Asian dust storms can be transported across eastern Asia. In vitro, Asian dust particle-induced inflammation and enhancement of the allergic reaction have been observed. However, the fibrotic effects of Asian dust particles are not clear. Production of transforming growth factor ${\beta}_1$ (TGF-${\beta}_1$) and fibronectin were investigated in the bronchial epithelial cells after exposure to Asian dust particulate matter (AD-PM10). Methods: During Asian dust storm periods, air samples were collected. The bronchial epithelial cells were exposed to AD-PM10 with and without the antioxidant, N-acetyl-L-cysteine (NAC). Then TGF-${\beta}_1$ and fibronectin were detected by Western blotting. The reactive oxygen species (ROS) was detected by the measurement of dicholorodihydrofluorescin (DCF), using a FACScan, and visualized by a confocal microscopy. Results: The expression of TGF-${\beta}_1$, fibronectin and ROS was high after being exposed to AD-PM10, compared to the control. NAC attenuated both TGF-${\beta}_1$ and fibronectin expression in the AD-PM10-exposed the bronchial epithelial cells. Conclusion: AD-PM10 may have fibrotic potential in the bronchial epithelial cells and the possible mechanism is AD-PM10-induced intracellular ROS.