• Title/Summary/Keyword: transforming growth factor-$Factor-{\beta}1$(TGF-$Factor-{\beta}1$)

Search Result 296, Processing Time 0.032 seconds

Saponins from Panax japonicus ameliorate age-related renal fibrosis by inhibition of inflammation mediated by NF-κB and TGF-β1/Smad signaling and suppression of oxidative stress via activation of Nrf2-ARE signaling

  • Gao, Yan;Yuan, Ding;Gai, Liyue;Wu, Xuelian;Shi, Yue;He, Yumin;Liu, Chaoqi;Zhang, Changcheng;Zhou, Gang;Yuan, Chengfu
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.408-419
    • /
    • 2021
  • Background: The decreased renal function is known to be associated with biological aging, of which the main pathological features are chronic inflammation and renal interstitial fibrosis. In previous studies, we reported that total saponins from Panax japonicus (SPJs) can availably protect acute myocardial ischemia. We proposed that SPJs might have similar protective effects for aging-associated renal interstitial fibrosis. Thus, in the present study, we evaluated the overall effect of SPJs on renal fibrosis. Methods: Sprague-Dawley (SD) aging rats were given SPJs by gavage beginning from 18 months old, at 10 mg/kg/d and 60 mg/kg/d, up to 24 months old. After the experiment, changes in morphology, function and fibrosis of their kidneys were detected. The levels of serum uric acid (UA), β2-microglobulin (β2-MG) and cystatin C (Cys C) were assayed with ELISA kits. The levels of extracellular matrix (ECM), matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), inflammatory factors and changes of oxidative stress parameters were examined. Results: After SPJs treatment, SD rats showed significantly histopathological changes in kidneys accompanied by decreased renal fibrosis and increased renal function; As compared with those in 3-month group, the levels of serum UA, Cys C and β2-MG in 24-month group were significantly increased (p < 0.05). Compared with those in the 24-month group, the levels of serum UA, Cys C and β2-MG in the SPJ-H group were significantly decreased. While ECM was reduced and the levels of MMP-2 and MMP-9 were increased, the levels of TIMP-1, TIMP-2 and transforming growth factor-β1 (TGF-β1)/Smad signaling were decreased; the expression level of phosphorylated nuclear factor kappa-B (NF-κB) was down-regulated with reduced inflammatory factors; meanwhile, the expression of nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) signaling was aggrandized. Conclusion: These results suggest that SPJs treatment can improve age-associated renal fibrosis by inhibiting TGF-β1/Smad, NFκB signaling pathways and activating Nrf2-ARE signaling pathways and that SPJs can be a potentially valuable anti-renal fibrosis drug.

The Effects of Exercise-based Cardiac Rehabilitation Phase II on Pro- and Anti-inflammatory Markers in Patients with Acute Coronary Syndrome

  • Kim, Al-Chan;Oh, Jae-Keun;Shin, Kyung-Ah;Kim, Young-Joo
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • The aim of this study was to evaluate the effect of exercise-based cardiac rehabilitation on pro- and anti-inflammatory markers in patients with acute coronary syndrome (ACS). ACS patients who underwent percutaneous coronary intervention (PCI) and took medicine during phase II of rehabilitation were recruited for study. Subjects were divided into two groups; exercise group (EX, n=21) and a non-exercise group (non-EX, n=13). Supervised exercise program in hospital consisted of treadmill and bicycle exercise was performed three times per week for 6 weeks. Patients of EX received individual counseling, including knowledge of heart disease, risk factor modification, and physical training. Cardiopulmonary fitness, body composition, and biochemical blood factors were analyzed before and after experiment. There was no significant difference in serum levels of hs-CRP and TGF-${\beta}1$ between groups, and between time intervals. But there was a significant decrease in serum levels of IL-18 (P<.001). And there was a significant increase in ratio of IL-18 to IL-10 (P<.01) and serum levels of IL-10 (P<.001). After cardiac rehabilitation, there was significant increase in exercise duration (P<.001), maximal oxygen uptake ($VO_{2peak}$; P<.001) and decrease in submaximal rate-pressure product (sRPP; P<.05) in EX. In conclusion, exercise-based cardiac rehabilitation during phase II in patients with ACS after PCI decreased serum IL-18 (pro-inflammatory) content and ratio of IL-18 to IL-10 in serum (highly related with disease recurrence), and increased serum IL-10 (anti-inflammatory) content. In addition, it led to improved cardiopulmonary fitness.

Novel Effect of Hyaluronan and Proteoglycan Link Protein 1 (HAPLN1) on Hair Follicle Cells Proliferation and Hair Growth

  • Hae Chan Ha;Dan Zhou;Zhicheng Fu;Moon Jung Back;Ji Min Jang;In Chul Shin;Dae Kyong Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.550-558
    • /
    • 2023
  • Hair loss is a common condition that can have a negative impact on an individual's quality of life. The severe side effects and the low efficacy of current hair loss medications create unmet needs in the field of hair loss treatment. Hyaluronan and Proteoglycan Link Protein 1 (HAPLN1), one of the components of the extracellular matrix, has been shown to play a role in maintaining its integrity. HAPLN1 was examined for its ability to impact hair growth with less side effects than existing hair loss treatments. HAPLN1 was predominantly expressed in the anagen phase in three stages of the hair growth cycle in mice and promotes the proliferation of human hair matrix cells. Also, recombinant human HAPLN1 (rhHAPLN1) was shown to selectively increase the levels of transforming growth factor-β receptor II in human hair matrix cells. Furthermore, we observed concomitant activation of the ERK1/2 signaling pathway following treatment with rhHAPLN1. Our results indicate that rhHAPLN1 elicits its cell proliferation effect via the TGF-β2-induced ERK1/2 pathway. The prompt entering of the hair follicles into the anagen phase was observed in the rhHAPLN1-treated group, compared to the vehicle-treated group. Insights into the mechanism underlying such hair growth effects of HAPLN1 will provide a novel potential strategy for treating hair loss with much lower side effects than the current treatments.

Korean Red Ginseng alleviates dehydroepiandrosterone-induced polycystic ovarian syndrome in rats via its antiinflammatory and antioxidant activities

  • Choi, Jong Hee;Jang, Minhee;Kim, Eun-Jeong;Lee, Min Jung;Park, Kyoung Sun;Kim, Seung-Hyun;In, Jun-Gyo;Kwak, Yi-Seong;Park, Dae-Hun;Cho, Seung-Sik;Nah, Seung-Yeol;Cho, Ik-Hyun;Bae, Chun-Sik
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.790-798
    • /
    • 2020
  • Background: Beneficial effects of Korean Red Ginseng (KRG) on polycystic ovarian syndrome (PCOS) remains unclear. Methods: We examined whether pretreatment (daily from 2 hours before PCOS induction) with KRG extract in water (KRGE; 75 and 150 mg/kg/day, p.o.) could exert a favorable effect in a dehydroepian-drosterone (DHEA)-induced PCOS rat model. Results: Pretreatment with KRGE significantly inhibited the elevation of body and ovary weights, the increase in number and size of ovarian cysts, and the elevation of serum testosterone and estradiol levels induced by DHEA. Pretreatment with KRGE also inhibited macrophage infiltration and enhanced mRNA expression levels of chemokines [interleukin (IL)-8, monocyte chemoattractant protein-1), proinflammatory cytokines (IL-1β, IL-6), and inducible nitric oxide synthase in ovaries induced by DHEA. It also prevented the reduction in mRNA expression of growth factors (epidermal growth factor, transforming growth factor-beta (EGF, TGF-β)) related to inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell pathway and stimulation of the nuclear factor erythroid-derived 2-related factor 2 pathway. Interestingly, KRGE or representative ginsenosides (Rb1, Rg1, and Rg3(s)) inhibited the activity of inflammatory enzymes cyclooxygenase-2 and iNOS, cytosolic p-IκB, and nuclear p-nuclear factor kappa-light-chain-enhancer of activated B in lipopolysaccharide-induced RAW264.7 cells, whereas they increased nuclear factor erythroid-derived 2-related factor 2 nuclear translocation. Conclusion: These results provide that KRGE could prevent DHEA-induced PCOS via antiinflammatory and antioxidant activities. Thus, KRGE may be used in preventive and therapeutic strategies for PCOS-like symptoms.

Anti-wrinkling effects of "L-Skin Care" and molecular mechanisms on hairless mouse skin caused by chronic ultraviolet B irradiation.

  • Cho, Ho-Song
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.11a
    • /
    • pp.153-158
    • /
    • 2007
  • Background: Naturally occurring antioxidants were used to regulate the skin damage caused by ultraviolet (UV) radiation because several antioxidants have demonstrated that they can inhibit wrinkle formation through prevention of matrix metalloproteinases (MMPs) and/or increase of collagen synthesis. We examined the effect of oral administration of the antioxidant mixture ("L-Skin Care") on UVB-induced wrinkle formation. In addition, we investigated the possible molecular mechanisms of photoprotection against UVB through inhibition of collagen-degrading MMP activity or through enhancing of pro collagen synthesis in mouse dorsal skin. Methods: Female SKH-l hairless mice were orally administrated "L-Skin Care" (test group) or vehicle (control group) for 10 weeks with UVB irradiation by three times a week. The intensity of irradiation was gradually increased from 30 to $180mJ/cm^2$. Microtopographic and histological assessments of the dorsal skins were carried out at the end of 10 weeks to evaluate wrinkle formation. Western blot analysis and EMSA were also carried out to investigate the changes in the balance of collagen synthesis and collagen degradation. Results: Our "L-Skin Care" significantly reduced UVB-induced wrinkle formation, accompanied by significant reduction of epidermal thickness, and UVB-induced hyperplasia, acanthosis and hyperkeratosis. Oral administration of "L-Skin Care" significantly prevented UVB-induced expressions of MMPs, mitogen-activated protein (MAP) kinases and activation of activator protein (AP)-1 transcriptional factor in addition to enhanced type I procollagen and transforming growth factor-$\beta$ (TGF-$\beta$) expression. Conclusion: Oral administration of "L-Skin Care" significantly inhibited wrinkle formation caused by chronic UVB irradiation through significant inhibition of UVB-induced MMP activity accompanied with enhancement of collagen synthesis.

  • PDF

Antioxidant Activity of Cannabidiol (CBD) and Effect on Its Proliferation in Human Dermal Papilla Cells (칸나비디올(CBD)의 항산화 활성 및 인간 모유두 세포 증식에 미치는 영향)

  • Soo Hyun Kim;Kyu-Sang Sim;Jung Yoon Cheon;Jae-Woong Jang;Su Jin Jeong;Ye Hei Seo;Hye Myoung Ahn;Bong-Geun Song;Gi-Seok Kwon;Jung-Bok Lee
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.234-241
    • /
    • 2023
  • At present, many countries around the world are legalizing cannabis and its products, and research on various treatments using cannabis is being actively conducted. However, the cannabis plant contains other compounds whose biological effects have not yet been established. We investigated the effect of cannabidiol (CBD) on hair growth in human dermal papilla cells (HDPCs). 2,2'-Azino-bis (3-ethylbenzothiazolin-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays were performed to determine the antioxidant activity of CBD. The HDPCs viability of CBD was examined via water-soluble tetrazolium salt (WST-1) assay. The expression of hair-loss-related markers in HDPCs by CBD treatment was analyzed by real-time PCR and western blotting. The DPPH, ABTS radical scavenging activity assay showed that CBD had superior antioxidant activities. In HDPCs, CBD increased cellular proliferation at concentrations without cytotoxicity. It also increased the expressions of fibroblast growth factor 1 (FGF1), fibroblast growth factor 7 (FGF7), vascular endothelial growth factor (VEGF), and insulin-like growth factor (IGF). These results correlated with a decrease in the expression of inhibition-related factors, such as androgen receptor (AR) and transforming growth factor beta 1 (TGF-B1). Moreover, CBD resulted in a significant increase in the phosphorylation of AKT and extracellular signal-regulated kinase (ERK). Therefore, it is suggested that CBD may be a potential remedy for the treatment of alopecia.

Effect of Fractions From Stachys sieboldii Miq. Root on Antioxidant, Anti-inflammation and Smad Signaling (초석잠 뿌리 분획물의 항산화 및 항염증 효과와 smad 신호 전달에 미치는 효과)

  • Jung Woo Lee;Myungwon Choi;Sun Young Lim
    • Journal of Life Science
    • /
    • v.34 no.4
    • /
    • pp.245-253
    • /
    • 2024
  • We investigated to analyze total flavonoid content and fatty acid composition of Stachys sieboldii Miq root. In order to determine antioxidant and anti-inflammatory effects of fractions from S. sieboldii Miq. root, we conducted 1.1-Diphenyl-2-picryhydrazyl (DPPH) and 2,2'-Azino-bis (3-ethylbenothiazoline-6-sulfonic acid) diammonium salt radical cation (ABTS) assays for antioxidant and measured nitric oxide (NO) production induced by lipopolysaccharide (LPS) in RAW 264.7 cells. In addition, we examined an inhibitory effect of fractions from S. sieboldii Miq. root on smad signaling induced by transforming growth factor (TGF) β. Among the fractions, n-butanol (n-BuOH) fraction showed the highest flavonoid content (16.67 mg/g), followed by n-Hexane, water and 85% aqueous methanol (85% aq. MeOH) fractions. The fatty acid composition of S. sieboldii Miq. root was in the following order : n-6 fatty acids (54.3%) > n-3 fatty acids (21.2%) > saturated fatty acids (19.7%) > n-9 fatty acids (3.6%). As a result of the antioxidant efficacy, the DPPH and ABTS assays showed that n-BuOH fraction had higher scavenging activity compared to other fractions. Inhibitory effect on NO production showed that all fractions decreased LPS-induced NO production, indicating an anti-inflammatory activity of S. sieboldii Miq. root. 85% aq. MeOH and water fractions showed a higher efficacy in inhibiting transforming growth factor (TGF) β induced smad signaling. From the results, it suggests that food processing products using S. sieboldii Miq. root will be developed as a functional food for promoting health.

Screening and Characterization of Lactobacillus casei MCL Strain Exhibiting Immunomodulation Activity

  • Choi, Jae-Kyoung;Lim, Yea-Seul;Kim, Hee-Jin;Hong, Yeong-Ho;Ryu, Buom-Yong;Kim, Geun-Bae
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.635-643
    • /
    • 2012
  • As an appraisal for the application of a new starter culture, more than 200 lactic acid bacteria strains were isolated from raw milk and healthy human feces. The strains showing excellent growth and acid production ability in 10% skim milk media were selected and identified as Lactobacillus casei based on the results of their API carbohydrate fermentation patterns, as well as 16S rDNA sequence analysis. To assess the effect of L. casei strains on irritable bowel disease (IBD), the inhibitory effect of the selected strains against the nitric oxide (NO) production of lipopolysaccharide (LPS)-stimulated RAW 264.7 cells was measured. Among the tested L. casei strains, L. casei MCL was observed to have the greatest NO inhibitory activity. Additionally, L. casei MCL was found to inhibit mRNA expression of pro-inflammatory cytokines (interleukin-$1{\beta}$, IL-6, TNF-${\alpha}$), as well as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) involved in pathophysiologic processes such as inflammation. The mRNA expression of anti-inflammatory cytokines, including IL-10 and transforming growth factor-$1{\beta}$ (TGF-${\beta}$) of L. casei MCL, was confirmed using quantitative real-time PCR. In conclusion, L. casei MCL showed decreases in the expression of pro-inflammatory cytokines and up-regulated expression of the anti-inflammatory cytokine.

Chondrogenic Differentiation of Human Mesenchymal Stem Cells on a Patterned Polymer Surface (패턴된 폴리머를 이용한 중간엽줄기세포의 연골 분화)

  • Heo, June Seok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.3
    • /
    • pp.117-124
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) are an attractive tool in tissue engineering as they have the required potential to treat injured articular cartilage. UV-exposed DTOPV (S-triazine bridged p-phenylene vinylene) is a biocompatible and fluorescent polymer with a hydrophilic surface. Previous studies have demonstrated that the surface wettability and hydrophilicity play critical roles in regulating cell adhesion and proliferation. The objective of this study was to improve the potential of in vitro MSC differentiation into Chondrocytes using DTOPV. MSCs were cultured on two different substrates: (1) tissue culture polystyrene (TCPS) as a reference and (2) UV-exposed and patterned DTOPV films. Chondrogenesis of MSCs was induced for two weeks on TCPS and DTOPV in the presence of an induction medium containing transforming growth factor (TGF)-${\beta}3$. Interestingly, the MSCs on TCPS adhered and spread, while those on DTOPV tended to form aggregates within several days. The cells cultured on DTOPV for two weeks had a round morphology, with stronger Safranine O staining of the extracellular matrix than that of the cells cultured on TCPS. Also, Type II collagen gene was significantly expressed in cells induced on DTOPV. These results indicate that chondrogenic differentiation of MSCs proceeds more rapidly on DTOPV than on TCPS. Therefore, in cartilage tissue engineering, DTOPV could be used to induce effective chondrogenic differentiation of MSCs.

Cashmere growth control in Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 and decorin genes

  • Jin, Mei;Zhang, Jun-yan;Chu, Ming-xing;Piao, Jun;Piao, Jing-ai;Zhao, Feng-qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.650-657
    • /
    • 2018
  • Objective: The study investigated the biological functions and mechanisms for controlling cashmere growth of Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 (OCIAD2) and decorin (DCN) genes. Methods: cDNA library of Liaoning cashmere goat was constructed in early stages. OCIAD2 and DCN genes related to cashmere growth were identified by homology analysis comparison. The expression location of OCIAD2 and DCN genes in primary and secondary hair follicles (SF) was performed using in situ hybridization. The expression of OCIAD2 and DCN genes in primary and SF was performed using real-time polymerase chain reaction (PCR). Results: In situ hybridization revealed that OCIAD2 and DCN were expressed in the inner root sheath of Liaoning cashmere goat hair follicles. Real-time quantitative PCR showed that these genes were highly expressed in SF during anagen, while these genes were highly expressed in primary hair follicle in catagen phase. Melatonin (MT) inhibited the expression of OCIAD2 and promoted the expression of DCN. Insulin-like growth factors-1 (IGF-1) inhibited the expression of OCIAD2 and DCN, while fibroblast growth factors 5 (FGF5) promoted the expression of these genes. MT and IGF-1 promoted OCIAD2 synergistically, while MT and FGF5 inhibited the genes simultaneously. MT+IGF-1/MT+FGF5 inhibited DCN gene. RNAi technology showed that OCIAD2 expression was promoted, while that of DCN was inhibited. Conclusion: Activation of bone morphogenetic protein (BMP) signaling pathway up-regulated OCIAD2 expression and stimulated SF to control cell proliferation. DCN gene affected hair follicle morphogenesis and periodic changes by promoting transforming growth $factor-{\beta}$ ($TGF-{\beta}$) and BMP signaling pathways. OCIAD2 and DCN genes have opposite effects on $TGF-{\beta}$ signaling pathway and inhibit each other to affect the hair growth.