• 제목/요약/키워드: transforming growth factor

검색결과 549건 처리시간 0.025초

Agastache rugosa Kuntze Attenuates UVB-Induced Photoaging in Hairless Mice through the Regulation of MAPK/AP-1 and TGF-β/Smad Pathways

  • Yun, Mann-Seok;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권9호
    • /
    • pp.1349-1360
    • /
    • 2019
  • Chronic exposure to ultraviolet (UV) radiation, regarded as a major cause of extrinsic aging or photoaging characterized by wrinkle formation and skin dehydration, exerts adverse effects on skin by causing the overproduction of reactive oxygen species. Agastache rugosa Kuntze, known as Korean mint, possesses a wide spectrum of biological properties including anti-oxidation, anti-inflammation, and anti-atherosclerosis. Previous studies have reported that A. rugosa protected human keratinocytes against UVB irradiation by restoring the anti-oxidant defense system. However, the anti-photoaging effect of A. rugosa extract (ARE) in animal models has not yet been evaluated. ARE was orally administered to hairless mice at doses of 100 or 250 mg/kg/day along with UVB exposure for 12 weeks. ARE histologically improved UVB-induced wrinkle formation, epidermal thickening, erythema, and hyperpigmentation. In addition, ARE recovered skin moisture by improving skin hydration and transepidermal water loss (TEWL). Along with this, ARE increased hyaluronic acid levels by upregulating HA synthase genes. ARE markedly increased the density of collagen and the amounts of hydroxypoline via two pathways. First, ARE significantly downregulated the mRNA expression of matrix metalloproteinases responsible for collagen degradation by inactivating the mitogen-activated protein kinase/activator protein 1 pathway. Second, ARE stimulated the transforming growth factor beta/Smad signaling, consequently raising the mRNA levels of collagen-related genes. In addition, ARE not only increased the mRNA expression of anti-oxidant enzymes but also decreased inflammatory cytokines by blocking the protein expression of nuclear factor kappa B. Collectively, our findings suggest that A. rugosa may be a potential preventive and therapeutic agent for photoaging.

Effects of Particulate Matter 10 Inhalation on Lung Tissue RNA expression in a Murine Model

  • Han, Heejae;Oh, Eun-Yi;Lee, Jae-Hyun;Park, Jung-Won;Park, Hye Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • 제84권1호
    • /
    • pp.55-66
    • /
    • 2021
  • Background: Particulate matter 10 (PM10; airborne particles <10 ㎛) inhalation has been demonstrated to induce airway and lung diseases. In this study, we investigate the effects of PM10 inhalation on RNA expression in lung tissues using a murine model. Methods: Female BALB/c mice were affected with PM10, ovalbumin (OVA), or both OVA and PM10. PM10 was administered intranasally while OVA was both intraperitoneally injected and intranasally administered. Treatments occurred 4 times over a 2-week period. Two days after the final challenges, mice were sacrificed. Full RNA sequencing using lung homogenates was conducted. Results: While PM10 did not induce cell proliferation in bronchoalveolar fluid or lead to airway hyper-responsiveness, it did cause airway inflammation and lung fibrosis. Levels of interleukin 1β, tumor necrosis factor-α, and transforming growth factor-β in lung homogenates were significantly elevated in the PM10-treated group, compared to the control group. The PM10 group also showed increased RNA expression of Rn45a, Snord22, Atp6v0c-ps2, Snora28, Snord15b, Snora70, and Mmp12. Generally, genes associated with RNA splicing, DNA repair, the inflammatory response, the immune response, cell death, and apoptotic processes were highly expressed in the PM10-treated group. The OVA/PM10 treatment did not produce greater effects than OVA alone. However, the OVA/PM10-treated group did show increased RNA expression of Clca1, Snord22, Retnla, Prg2, Tff2, Atp6v0c-ps2, and Fcgbp when compared to the control groups. These genes are associated with RNA splicing, DNA repair, the inflammatory response, and the immune response. Conclusion: Inhalation of PM10 extensively altered RNA expression while also inducing cellular inflammation, fibrosis, and increased inflammatory cytokines in this murine mouse model.

Molecular Characteristics and Potent Immunomodulatory Activity of Fasciola hepatica Cystatin

  • Zhang, Kai;Liu, Yucheng;Zhang, Guowu;Wang, Xifeng;Li, Zhiyuan;Shang, Yunxia;Ning, Chengcheng;Ji, Chunhui;Cai, Xuepeng;Xia, Xianzhu;Qiao, Jun;Meng, Qingling
    • Parasites, Hosts and Diseases
    • /
    • 제60권2호
    • /
    • pp.117-126
    • /
    • 2022
  • Cystatin, a cysteine protease inhibitor found in many parasites, plays important roles in immune evasion. This study analyzed the molecular characteristics of a cystatin from Fasciola hepatica (FhCystatin) and expressed recombinant FhCystatin (rFhcystatin) to investigate the immune modulatory effects on lipopolysaccharide-induced proliferation, migration, cytokine secretion, nitric oxide (NO) production, and apoptosis in mouse macrophages. The FhCystatin gene encoded 116 amino acids and contained a conserved cystatin-like domain. rFhCystatin significantly inhibited the activity of cathepsin B. rFhCystatin bound to the surface of mouse RAW264.7 cells, significantly inhibited cell proliferation and promoted apoptosis. Moreover, rFhCystatin inhibited the expression of cellular nitric oxide, interleukin-6, and tumor necrosis factor-α, and promoted the expression of transforming growth factor-β and interleukin-10. These results showed that FhCystatin played an important role in regulating the activity of mouse macrophages. Our findings provide new insights into mechanisms underlying the immune evasion and contribute to the exploration of potential targets for the development of new drug to control F. hepatica infection.

Mild Traumatic Brain Injury and Subsequent Acute Pulmonary Inflammatory Response

  • Lim, Seung Hyuk;Jung, Harry;Youn, Dong Hyuk;Kim, Tae Yeon;Han, Sung Woo;Kim, Bong Jun;Lee, Jae Jun;Jeon, Jin Pyeong
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권5호
    • /
    • pp.680-687
    • /
    • 2022
  • Objective : The influence of moderate-to-severe traumatic brain injury (TBI) on acute pulmonary injury is well established, but the association between acute pulmonary injury and mild TBI has not been well studied. Here, we evaluated the histological changes and fluctuations in inflammatory markers in the lungs to determine whether an acute pulmonary inflammatory response occurred after mild TBI. Methods : Mouse models of mild TBI (n=24) were induced via open-head injuries using a stereotaxic impactor. The brain and lungs were examined 6, 24, and 72 hours after injury and compared to sham-operated controls (n=24). Fluoro-Jade B staining and Astra blue and hematoxylin staining were performed to assess cerebral neuronal degeneration and pulmonary histological architecture. Quantitative real-time polymerase chain reaction analysis was done to measure inflammatory cytokines. Results : Increased neuronal degeneration and the mRNA expression of interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β were observed after mild TBI. The IL-6, TNF-α, and TGF-β levels in mice with mild TBI were significantly different compared to those of sham-operated mice 24 hours after injury, and this was more pronounced at 72 hours. Mild TBI induced acute pulmonary interstitial edema with cell infiltration and alveolar morphological changes. In particular, a significant infiltration of mast cells was observed. Among the inflammatory cytokines, TNF-α was significantly increased in the lungs at 6 hours, but there was no significant difference 24 and 72 hours after injury. Conclusion : Mild TBI induced acute pulmonary interstitial inflammation and alveolar structural changes, which are likely to worsen the patient's prognosis.

Rebalancing SMAD7/SMAD3 Signaling Reduces Adhesion Formation during Flexor Tendon Healing

  • Ke Jiang;Yuling Li;Chao Xiang;Yan Xiong;Jiameng Jia
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권3호
    • /
    • pp.339-347
    • /
    • 2023
  • Transforming growth factor-β is a key factor in regulating adhesion formation during tendon healing. We investigated the effectiveness of SMAD family members, SMAD7 and SMAD3, in the TGF-β/Smad signaling during flexor tendon repair. Mouse flexor toe deep tendon rupture anastomosis models were made. On days 3, 7, 14, 21, and 28, the expressions of smad7 and smad3 in flexor tendon tissues were detected by RT-qPCR and western blot. Furthermore, postoperative intraperitoneal injections of SMAD7 agonists or SMAD3 antagonists were given. The degree of tendon healing was evaluated by adhesion testing and biomechanical experiments. Hematoxylin and eosin (HE) staining was used to observe the pathological changes. Immunohistochemistry was used to evaluate the expressions of collagen III, SMAD3, and SMAD7. The mRNA levels of matrix metalloproteinases, Mmp2 and Mmp9, and scleraxis (SCX) in flexor tendon tissue were detected by RT-qPCR. Smad3 expression increased and Smad7 expression decreased in flexor tendon tissue after injury. In addition, the SMAD7 agonist blocked SMAD3 phosphorylation. SMAD7 agonist and SMAD3 antagonist both improved adhesion formation during flexor tendon healing, and decreased the expressions of collagen III, Mmp9, and SCX, while increasing Mmp2 expression. This study provides a possible theoretical basis for the SMAD7-SMAD3 signal cascade during flexor tendon adhesion healing.

Immune-enhancing effect of hydrolyzed and fermented Platycodon grandiflorum extract in cyclophosphamide-induced immunosuppressed BALB/c mice

  • Hyun Sook Lee;So Mi Kim;Jae In Jung;Jihoon Lim;Moonjea Woo;Eun Ji Kim
    • Nutrition Research and Practice
    • /
    • 제17권2호
    • /
    • pp.206-217
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: The immunomodulatory effect of Platycodon grandiflorum (PG) has been reported, but studies on its mechanism are still lacking. This study was undertaken to confirm whether the hydrolyzed and fermented PG extract (HFPGE) obtained by adding hydrolysis and fermentation to the extraction process has an immune-enhancing effect in the in vivo system. MATERIALS/METHODS: Five-week-old BALB/c mice were divided into 4 groups: normal control group (NOR), control group (CON), 150 mg/kg body weight (BW)/day HFPGE-treated group (T150), and 300 mg/kg BW/day HFPGE-treated group (T300). The mice were administered HFPGE for 4 weeks and intraperitoneally injected with cyclophosphamide (CPA, 80 mg/kg BW/day) on day 6, 7, and 8, respectively, to induce immunosuppression. The levels of immunoglobulins (Igs) and cytokines were measured in the serum. In splenocytes, proliferation and cytokine levels were measured. RESULTS: Serum IgA, IgG, and IgM levels were observed to decrease after CPA treatment, which was recovered by HFPGE administration. The levels of serum interleukin (IL)-12, tumor necrosis factor (TNF)-α, IL-8, and transforming growth factor (TGF)-β were also decreased after exposure to CPA but increased after HFPGE administration. Decreased splenocyte proliferation was seen in CPA-treated mice, but was observed to increase in the T150 and T300 groups as compared to the NOR group. Compared to the CON group, splenocyte proliferation stimulated with concanavalin A (ConA) or lipopolysaccharide (LPS) in the HFPGE-treated groups was significantly increased. The cytokines secreted by ConA-stimulated splenocytes (IL-2, IL-12, interferon-γ, TNF-α) were increased in the T150 and T300 groups, and cytokines secreted by LPS-stimulated splenocytes (IL-4, IL-8, TGF-β) were also increased by HFPGE administration. CONCLUSION: These results suggest that HFPGE stimulates the immunity in immunosuppressed conditions, thereby enhancing the immune response. Therefore, it is expected that HFPGE has the potential to be used as functional food and medicine for immune recovery in various immunocompromised situations.

Effect of fermented sarco oyster extract on age induced sarcopenia muscle repair by modulating regulatory T cells

  • Kyung-A Byun;Seyeon Oh;Sosorburam Batsukh;Kyoung-Min Rheu;Bae-Jin Lee;Kuk Hui Son;Kyunghee Byun
    • Fisheries and Aquatic Sciences
    • /
    • 제26권6호
    • /
    • pp.406-422
    • /
    • 2023
  • Sarcopenia is an age-related, progressive skeletal muscle disorder involving the loss of muscle mass and strength. Previous studies have shown that γ-aminobutyric acid (GABA) from fermented oysters aids in regulatory T cells (Tregs) cell expansion and function by enhancing autophagy, and concomitantly mediate muscle regeneration by modulating muscle inflammation and satellite cell function. The fermentation process of oysters not only increases the GABA content but also enhances the content of branched amino acids and free amino acids that aid the level of protein absorption and muscle strength, mass, and repair. In this study, the effect of GABA-enriched fermented sarco oyster extract (FSO) on reduced muscle mass and functions via Treg modulation and enhanced autophagy in aged mice was investigated. Results showed that FSO enhanced the expression of autophagy markers (autophagy-related gene 5 [ATG5] and GABA receptor-associated protein [GABARAP]), forkhead box protein 3 (FoxP3) expression, and levels of anti-inflammatory cytokines (interleukin [IL]-10 and transforming growth factor [TGF]-β) secreted by Tregs while reducing pro-inflammatory cytokine levels (IL-17A and interferon [IFN]-γ). Furthermore, FSO increased the expression of IL-33 and its receptor IL-1 receptor-like 1 (ST2); well-known signaling pathways that increase amphiregulin (Areg) secretion and expression of myogenesis markers (myogenic factor 5, myoblast determination protein 1, and myogenin). Muscle mass and function were also enhanced via FSO. Overall, the current study suggests that FSO increased autophagy, which enhanced Treg accumulation and function, decreased muscle inflammation, and increased satellite cell function for muscle regeneration and therefore could decrease the loss of muscle mass and function with aging.

제브라피쉬 근육성장에서의 carnosic acid의 효과 (Effects of Carnosic Acid on Muscle Growth in Zebrafish (Danio rerio))

  • 김정환;진덕희;김영대;진형주
    • 한국어류학회지
    • /
    • 제26권3호
    • /
    • pp.171-178
    • /
    • 2014
  • 로즈마리의 주요 성분인 carnosic acid는 carnosol, rosmarinic acid, ursolic acid 등과 같은 폴리페놀의 한 성분으로 다양한 생리활성 기능이 보고되어 있다. 본 연구에서는 로즈마리 유래 폴리페놀인 carnosic acid가 제브라피쉬 근육성장에 미치는 영향을 근육 내 주사와 사료를 통해서 확인해 보았다. 근육 내 주사 실험을 통해서 CA는 제브라 피쉬의 근육 내 단백질 함량을 증가시키고 중성지방의 함량을 감소시켰다. 또한 조직학적 분석 결과 근섬유의 평균 면적이 커지는 근섬유의 과비대 효과를 나타내었다. 사료 실험 결과 근육 내 단백질 및 중성지방의 함량에는 영향을 미치지 않았으며 조직학적 분석 결과 근육 내 주사 실험에서와 마찬가지로 근 섬유의 과비대를 유도하였다.

Roles of GASP-1 and GDF-11 in Dental and Craniofacial Development

  • Lee, Yun-Sil;Lee, Se-Jin
    • Journal of Oral Medicine and Pain
    • /
    • 제40권3호
    • /
    • pp.110-114
    • /
    • 2015
  • Purpose: Growth and differentiation factor (GDF)-11 is a transforming growth factor-${\beta}$ family member that plays important regulatory roles in development of multiple tissues which include axial skeletal patterning, palatal closure, and tooth formation. Proteins that have been identified as GDF-11 inhibitors include GDF-associated serum protein (GASP)-1 and GASP-2. Recently, we found that mice genetically engineered to lack both Gasp1 and Gdf11 have an increased frequency of cleft palate. The goal of this study was to investigate the roles of GDF-11 and its inhibitors, GASP-1 and GASP-2, during dental and craniofacial development and growth. Methods: Mouse genetic studies were used in this study. Homozygous knockout mice for Gasp1 ($Gasp1^{-/-}$) and Gasp2 ($Gasp2^{-/-}$) were viable and fertile, but Gdf11 homozygous knockout ($Gdf11^{-/-}$) mice died within 24 hours after birth. The effect of either Gasp1 or Gasp2 deletion in $Gdf11^{-/-}$ mice during embryogenesis was evaluated in $Gasp1^{-/-}$;$Gdf11^{-/-}$ and $Gasp2^{-/-}$;$Gdf11^{-/-}$ mouse embryos at 18.5 days post-coitum (E18.5). For the analysis of adult tissues, we used $Gasp1^{-/-}$;$Gdf11^{+/-}$ and $Gasp2^{-/-}$;$Gdf11^{+/-}$ mice to evaluate the potential haploinsufficiency of Gdf11 in $Gasp1^{-/-}$ and $Gasp2^{-/-}$ mice. Results: Although Gasp2 expression decreased after E10.5, Gasp1 expression was readily detected in various ectodermal tissues at E17.5, including hair follicles, epithelium in nasal cavity, retina, and developing tooth buds. Interestingly, $Gasp1^{-/-}$;$Gdf11^{-/-}$ mice had abnormal formation of lower incisors: tooth buds for lower incisors were under-developed or missing. Although $Gdf11^{+/-}$ mice were viable and had mild transformations of the axial skeleton, no specific defects in the craniofacial development have been observed in $Gdf11^{+/-}$ mice. However, loss of Gasp1 in $Gdf11^{+/-}$ mice occasionally resulted in small and abnormally shaped auricles. Conclusions: These findings suggest that both GASP-1 and GDF-11 play important roles in dental and craniofacial development both during embryogenesis and in adult tissues.

야관문 추출물의 창상치유 효과 (Wound Healing Effects of Lespedeza cuneata Extract)

  • 정희경;김길수;정유석
    • 한국식품영양과학회지
    • /
    • 제43권3호
    • /
    • pp.374-380
    • /
    • 2014
  • 본 연구에서는 야관문 추출물의 마우스 대식세포에 대한 항염증 활성과 창상유발 동물실험 모델을 통한 창상치유 효과를 조사하였다. RAW264.7 세포에서 야관문 추출물은 0.2 mg/mL 이하 농도에서 세포생존에 영향을 주지 않았으며, 염증반응이 활성화된 대식세포에 대해 농도 의존적으로 유의적인 NO 생성 감소를 나타내었다. 창상유발 동물실험 모델에서 야관문 추출물을 함유한 화장품 조성물의 창상치유효과에 대해 육안적으로 관찰한 결과, SCO군과 CCO군보다 야관문 추출물을 함유한 SSP군에서 약 20~30% 빠른 상처면적 감소 효과를 나타내었으며, 반흔 크기 역시 약 12% 작게 형성되었다. 또한 SSP군 조직의 외피와 진피 재생회복속도가 빨라진 것을 Masson's trichrome 염색을 통해 확인할 수 있었으며, VEGF 및 TGF-${\beta}1$ 유전자 발현이 SCO군과 비교 시 각각 감소 및 증가하였다. 이러한 결과는 야관문 추출물이 항염증 및 교원질 생성 유도를 통한 조직재생 활성에 기여하여 창상치유 속도를 가속화하고 반흔 면적을 감소시킬 수 있는 피부 창상치유와 관련한 코스메슈티컬 소재로써 산업적 활용이 가능함을 보여준다.