• 제목/요약/키워드: transforming growth factor

검색결과 548건 처리시간 0.029초

Promotion Effects of Ultra-High Molecular Weight Poly-γ-Glutamic Acid on Wound Healing

  • Choi, Jae-Chul;Uyama, Hiroshi;Lee, Chul-Hoon;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권6호
    • /
    • pp.941-945
    • /
    • 2015
  • We examined the in vivo efficacy of ultra-high molecular weight poly-γ-glutamic acid (UHMW γ-PGA) for wound healing. The wound area was measured by a ruler and documented by digital photography before the animals were sacrificed at days 8 and 16 post wounding. The areas of wounds treated with UHMW γ-PGA were significantly decreased on days 8 and 16, as compared with those receiving a control treatment, and more than 70% of the UHMW γ-PGAtreated area was repaired by day 8. Hematoxylin and eosin staining confirmed that the epidermis had regenerated in the UHMW γ-PGA-treated wounds. At 16 days post wounding, collagen pigmentation and cross-linking were increased as compared with the control groups, and greater regeneration of blood vessels had occurred in UHMW γ-PGA-treated groups. Increased levels of transforming growth factor-beta and β-catenin were also observed in skin samples collected from UHMW γ-PGA-treated animals on days 8 and 16 post incision. Taken together, these findings suggest that UHMW γ-PGA promotes wound healing in vivo.

Expression and Receptor Binding Activity of Fusion Protein from Transforming Growth Factor-${/beta}1$ and GFP

  • Yoon, Jun-Ho;Kim, Pyeung-Hyeun;Chun, Gie-Taek;Choi, Eui-Yul;Yie, Se-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.65-70
    • /
    • 2002
  • A TGF-${\beta}1$/GFP monomeric fusion protein was cloned from pPK9A and pGFP-Cl plasmid by PCR amplification. The fusion protein was expressed in a $Bac-To-Bac^{TM}$ baculovirus expression system. A 45 kDa fusion protein was purified using an Ni-NTA column with 300 mM imidazol from a cell lysate infected with recombinant viruses for 72 h post-infection. The fusion protein cross-reacted with the commercial $TGF-{\beta}1$ polyclonal Ab as well as Ab raised against a precursor, monomeric $TGF-{\beta}1$, and GFP. The binding activity of the fusion protein with a $TGF-{\beta}1$ receptor was examined. Fluorescence was observed in Mv1Lu cells, yet not in insect cells treated with the fusion protein. No fluorescence was detected in Mv1Lu cells incubated with the fusion protein treated with Ab prior to the binding reaction, or with GFP alone, thereby indicating that the binding of the fusion protein was specific to $TGF-{\beta}1$ with a receptor.

Epithelial-mesenchymal Transition and Cell Invasion

  • Son, Hwa-Jin;Moon, Aree
    • Toxicological Research
    • /
    • 제26권4호
    • /
    • pp.245-252
    • /
    • 2010
  • Epithelial-mesenchymal transition (EMT) is a complex process in which epithelial cells acquire the characteristics of invasive mesenchymal cells. EMT has been implicated in cancer progression and metastasis as well as the formation of many tissues and organs during development. Epithelial cells undergoing EMT lose cell-cell adhesion structures and polarity, and rearrange their cytoskeletons. Several oncogenic pathways such as transforming growth factor (TGF)-$\beta$, Wnt, and Notch signaling pathways, have been shown to induce EMT. These pathways have activated transcription factors including Snail, Slug, and the ZEB family which work as transcriptional repressors of E-cadherin, thereby making epithelial cells motile and resistant to apoptosis. Mounting evidence shows that EMT is associated with cell invasion and tumor progression. In this review, we summarize the characteristic features of EMT, pathways leading to EMT, and the role of EMT in cell invasion. Three topics are addressed in this review: (1) Definition of EMT, (2) Signaling pathways leading to EMT, (3) Role of EMT in cell invasion. Understanding the role of EMT in cell invasion will provide valuable information for establishing strategies to develop anti-metastatic therapeutics which modulate malignant cellular processes mediated by EMT.

Inhibitory Effect of Rutaecarpine on Thioacetamide (TAA)-induced Hepatic Fibrosis

  • Ahn, Hyunjin;Lee, Sung-Jin;Nam, Kung-Woo;Mar, Woongchon
    • Natural Product Sciences
    • /
    • 제20권4호
    • /
    • pp.262-268
    • /
    • 2014
  • Rutaecarpine is one of the major alkaloids present in the fruits of Evodia rutaecarpa. In this study, rutaecarpine was evaluated, both in vitro and in vivo, for its hepatoprotective properties against thioacetamide (TAA)-induced hepatic fibrosis. The results showed that rutaecarpine inhibited TAA-induced cytotoxicity, reduced the expression of the fibrogenic cytokine transforming growth factor ${\beta}1$ ($TGF-{\beta}1$), and induced the expression of bcl-2. To evaluate its in vivo effects, animal models with TAA-induced hepatic fibrosis were utilized. Levels of liver tissue injury-associated enzymes, including alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were monitored. $TGF-{\beta}1$ and the ${\alpha}$-smooth muscle actin (${\alpha}$-SMA) were measured as markers of the protective effects on hepatic fibrosis. The AST and ALT levels in blood were greatly enhanced by TAA and completely blunted by rutaecarpine. Rutaecarpine led to the down-regulation of $TGF-{\beta}$ and Bax mRNA expression, as well as the up-regulation of Bcl-2 and $Bcl-X_L$ mRNA levels. In conclusion, rutaecarpine inhibited TAA-induced hepatic fibrosis and apoptosis by inducing the expression of Bcl-2 while blocking $TGF-{\beta}1$ in our TAA-intoxicated model.

Recombinant Human Bone Morphogenetic Protein-2 in Development and Progression of Oral Squamous Cell Carcinoma

  • Zaid, Khaled Waleed;Chantiri, Mansour;Bassit, Ghassan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.927-932
    • /
    • 2016
  • Bone morphogenetic proteins (BMPs), belonging to the transforming growth factor-${\beta}$ superfamily, regulate many cellular activities including cell migration, differentiation, adhesion, proliferation and apoptosis. Use of recombinant human bone morphogenic protein-2 (rhBMP-2) in oral and maxillofacial surgery has seen a tremendous increase. Due to its role in many cellular pathways, the influence of this protein on carcinogenesis in different organs has been intensively studied over the past decade. BMPs also have been detected to have a role in the development and progression of many tumors, particularly disease-specific bone metastasis. In oral squamous cell carcinoma - the tumor type accounting for more than 90% of head and neck malignancies- aberrations of both BMP expression and associated signaling pathways have a certain relation with the development and progression of the disease by regulating a range of biological functions in the altered cells. In the current review, we discuss the influence of BMPs -especially rhBMP-2- in the development and progression of oral squamous cell carcinoma.

Roles of Signaling Pathways in the Epithelial-Mesenchymal Transition in Cancer

  • Liu, Xia;Yun, Fen;Shi, Lin;Li, Zhe-Hai;Luo, Nian-Rong;Jia, Yong-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6201-6206
    • /
    • 2015
  • The epithelial-mesenchymal transition (EMT) is a cellular process though which an epithelial phenotype can be converted into a phenotype of mesenchymal cells. Under physiological conditions EMT is important for embryogenesis, organ development, wound repair and tissue remodeling. However, EMT may also be activated under pathologic conditions, especially in carcinogenesis and metastatic progression. Major signaling pathways involved in EMT include transforming growth factor ${\beta}(TGF-{\beta})$, Wnt, Notch, Hedgehog and other signaling pathways. These pathways are related to several transcription factors, including Twist, Smads and zinc finger proteins snail and slug. These interact with each other to provide crosstalk between the relevant signaling pathways. This review lays emphasis on studying the relationship between EMT and signaling pathways in carcinogenesis and metastatic progression.

Transcription Regulation Network Analysis of MCF7 Breast Cancer Cells Exposed to Estradiol

  • Wu, Jun-Zhao;Lu, Peng;Liu, Rong;Yang, Tie-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.3681-3685
    • /
    • 2012
  • Background: In breast cancer, estrogen receptors have been demonstrated to interact with transcription factors to regulate target gene expression. However, high-throughput identification of the transcription regulation relationship between transcription factors and their target genes in response to estradiol is still in its infancy. Purpose: Thus, the objective of our study was to interpret the transcription regulation network of MCF7 breast cancer cells exposed to estradiol. Methods: In this work, GSE11352 microarray data were used to identify differentially expressed genes (DEGs). Results: Our results showed that the MYB (v-myb myeloblastosis viral oncogene homolog [avian]), PGR (progesterone receptor), and MYC (v-myc myelocytomatosis viral oncogene homolog [avian]) were hub nodes in our transcriptome network, which may interact with ER and, in turn, regulate target gene expression. MYB can up-regulate MCM3 (minichromosome maintenance 3) and MCM7 expression; PGR can suppress BCL2 (B-cell lymphoma 2) expression; MYC can inhibit TGFB2 (transforming growth factor, beta 2) expression. These genes are associated with breast cancer progression via cell cycling and the $TGF{\beta}$ signaling pathway. Conclusion: Analysis of transcriptional regulation may provide a better understanding of molecular mechanisms and clues to potential therapeutic targets in the treatment of breast cancer.

The Signaling Mechanism of TGF-β1 Induced Bovine Mammary Epithelial Cell Apoptosis

  • Di, He-Shuang;Wang, Li-Gang;Wang, Gen-Lin;Zhou, Lei;Yang, Yuan-Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권3호
    • /
    • pp.304-310
    • /
    • 2012
  • The present study showed that Transforming growth factor beta 1 (TGF-${\beta}_1$) can induce apoptosis of bovine mammary epithelial cells. This apoptosis was also observed with phosphorylation of Smad2/3 within 0.5-2 h. Afterwards the signal transferred into the nucleus. Moreover, intracellular free $Ca^{2+}$ concentration was significantly elevated as well as Caspase-3 activated and DNA lysised, thereby inducing the programmed cell death. This signaling pathway of TGF-${\beta}_1$ was blocked by SB-431542 ($10^{-2}{\mu}M$) via inhibiting ALK-5 kinase activity, which thus reversed the anti-proliferation and apoptosis effect of TGF-${\beta}_1$ in mammary epithelial cells. These results indicated that TGF-${\beta}_1$ induced apoptosis of bovine mammary epithelial cells through the ALK-5-Smad2/3 pathway, which plays an important role in inhibiting survival of mammary epithelial cells. Moreover, intracellular $Ca^{2+}$ also played a critical role in TGF-${\beta}_1$-induced cell apoptosis.

철 과잉투여가 흰쥐의 Hepatic Fibrogenesis와 Collagen 및 TGF-$\beta$I 유전자 발현에 미치는 영향 (Influence of Collagen and TGF-$\beta$I Gene Expression and Hepatic Fibrogenesis by Iron Overload in Rat)

  • 양영목;박종환;이현영;정연희;김해영
    • 한국식품영양과학회지
    • /
    • 제30권2호
    • /
    • pp.307-313
    • /
    • 2001
  • Iron excess is known to affect long-term iron accumulation and tissue change such as fibrosis in liver. To determine the changes of expression level of genes associated with fibrosis by short-term iron exposure, we measured liver mRNA levels by reverse transcription polymerase chain reaction (RT-PCR) in rats fed dietary carbonyl iron (3%, wt/wt) for 9 weeks. The results showed that the expression of the collagen (I, III) and transforming growth factor (TGF)-$\beta$I mRNAs was enhanced in high-dose iron treated rat, compared to normal-dose iron treated rat. An electron microscopy study revealed that excess iron caused increase of collagen fibrils in liver. The cell shapes and compositions of hepatocytes and extracellular matrix(ECM) in liver were changed by the iron-treatment. Also, necrosised hepatocytes were broadly seen in ECM. Taken together, we suggest that iron overload affects changes of collagen and TGF-$\beta$I gene expression and these changes are associated with liver fibrogenesis.

  • PDF

Development of TGF-$\beta$ Resistance During Malignant Progression

  • Kim, Yong-Seok;Yi, Young-Suk;Choi, Shin-Geon;Kim, Seong-Jin
    • Archives of Pharmacal Research
    • /
    • 제22권1호
    • /
    • pp.1-8
    • /
    • 1999
  • Transforming growth factor-$\beta$ (TGF-$\beta$) is the prototypical multifunctional cytokine, participating in the regulation of vital cellular activities such as proliferation and differentiations as well as a number of basic physiological functions. The effects of TGF-$\beta$ are critically dependent on the expression and distribution of a family of TGF-$\beta$ receptors, the TGF-$\beta$ types I, II, and III. It is now known that a wide variety of human pathology can be caused by aberrant expression and function of these receptors. the coding sequence of the type II receptor (RII) appears to render it uniquely susceptible to DNA replication errors in the course of normal cell division. By virtue of its key role in the regulation of cell proliferation, TGF-$\beta$ RII should be considered as a tumor suppressor gene. High levels of mutation in the TGF-$\beta$ RII gene have been observed in a wide range of primarily epithelial malignancies, including colon and gastric cancer. It appears likely that mutation of the TGF-$\beta$ RII gene may be a very critical step in the pathway of carcinogenesis.

  • PDF