• Title/Summary/Keyword: transformerless

Search Result 62, Processing Time 0.016 seconds

Novel Active Voltage Quality Regulator with Adaptive DC-Link Voltage Control

  • Xiao, Guochun;Zeng, Zhong;Liu, Kai;Hu, Zhiliang;Wang, Zhaoan
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.880-889
    • /
    • 2011
  • In this paper, a novel Active Voltage Quality Regulator (AVQR) topology with a thyristor rectifier and an adaptive dclink voltage control strategy are proposed. The proposed AVQR can efficiently mitigate the long duration variations (e.g. undervoltages/overvoltages), voltage imbalances and voltage harmonics. Compared with conventional AVQRs, it can regulate the load voltage very well with a much lower dc-link voltage. This is accomplished by replacing the diode rectifier with a thyristor rectifier. Moreover, its dc-link voltage can vary with the deviations of the supply voltage through the proposed adaptive dc-link voltage control strategy. All of these contribute to its significantly higher efficiency for online operating, which is very important and attractive for many applications. The proposed topology and control strategy are theoretically analyzed in detail. Simulation results are also provided in the paper. Finally, the feasibility and effectiveness of the proposed method are verified by means of experimental results from a 2kVA prototype. Both of the simulation and experimental results show that the proposed AVQR can achieve a much higher efficiency and similar regulation performance when compared with the conventional ones.

A High-efficiency Single-phase Photovoltaic Inverter for High-voltage Photovoltaic Panels (고전압 태양광 패널용 고효율 단상 태양광 인버터)

  • Hyung-Min, Ryu
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.584-589
    • /
    • 2022
  • For DC-AC power conversion from a high-voltage photovoltaic panel to a single-phase grid, the two-stage transformerless inverter with a buck-boost converter followed by a full-bridge inverter is widely used. To avoid an excessive leakage current due to the large parasitic capacitance of the photovoltaic panel, the full-bridge inverter can only adopt the bipolar PWM which results in much higher power loss compared to the unipolar PWM. In order to overcome such a poor efficiency, this paper proposes a new topology in which an IGBT and a diode for circuit isolation are added to the buck-boost converter. The proposed circuit isolation method allows the unipolar PWM in the full-bridge inverter without any increase in the leakage current so that the overall efficiency can be improved. The validity of the proposed solution is verified by computer simulation and power loss calculation.