• Title/Summary/Keyword: transformation start temperature

Search Result 18, Processing Time 0.027 seconds

Microstructure and Mechanical Properties of High-Strength Low-Carbon Bainitic Steels with Enhanced Deformability (높은 변형능을 갖는 저탄소 베이나이트계 고강도강의 미세조직과 기계적 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.423-429
    • /
    • 2013
  • Recently, steel structures have increasingly been required to have sufficient deformability because they are subjected to progressive or abrupt displacement arising from structure loading itself, earthquake, and ground movement in their service environment. In this study, high-strength low-carbon bainitic steel specimens with enhanced deformability were fabricated by varying thermo-mechanical control process conditions consisting of controlled rolling and accelerated cooling, and then tensile and Charpy V-notch impact tests were conducted to investigate the correlation between microstructure and mechanical properties such as strength, deformability, and low-temperature toughness. Low-temperature transformation phases, i.e. granular bainite (GB), degenerate upper bainite(DUB), lower bainite(LB) and lath martensite(LM), together with fine polygonal ferrite(PF) were well developed, and the microstructural evolution was more critically affected by start and finish cooling temperatures than by finish rolling temperature. The steel specimens start-cooled at higher temperature had the best combination of strength and deformability because of the appropriate mixture of fine PF and low-temperature transformation phases such as GB, DUB, and LB/LM. On the other hand, the steel specimens start-cooled at lower temperature and finish-cooled at higher temperature exhibited a good low-temperature toughness because the interphase boundaries between the low-temperature transformation phases and/or PF act as beneficial barriers to cleavage crack propagation.

Study on predictive model and mechanism analysis for martensite transformation temperatures through explainable artificial intelligence (설명가능한 인공지능을 통한 마르텐사이트 변태 온도 예측 모델 및 거동 분석 연구)

  • Junhyub Jeon;Seung Bae Son;Jae-Gil Jung;Seok-Jae Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.3
    • /
    • pp.103-113
    • /
    • 2024
  • Martensite volume fraction significantly affects the mechanical properties of alloy steels. Martensite start temperature (Ms), transformation temperature for martensite 50 vol.% (M50), and transformation temperature for martensite 90 vol.% (M90) are important transformation temperatures to control the martensite phase fraction. Several researchers proposed empirical equations and machine learning models to predict the Ms temperature. These numerical approaches can easily predict the Ms temperature without additional experiment and cost. However, to control martensite phase fraction more precisely, we need to reduce prediction error of the Ms model and propose prediction models for other martensite transformation temperatures (M50, M90). In the present study, machine learning model was applied to suggest the predictive model for the Ms, M50, M90 temperatures. To explain prediction mechanisms and suggest feature importance on martensite transformation temperature of machine learning models, the explainable artificial intelligence (XAI) is employed. Random forest regression (RFR) showed the best performance for predicting the Ms, M50, M90 temperatures using different machine learning models. The feature importance was proposed and the prediction mechanisms were discussed by XAI.

The Change of Microstructures by Low Temperature Aging in Y-TZP (저온 열처리에 의한 Y-TZP 미세조직의 변화)

  • Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.735-740
    • /
    • 1990
  • The phase transformation of Y-TZP by low temperature aging treatments and its related behaviors of crack formation were investigated. The kinetics of phase transformation was greatly dependent on the amounts of Y2O3, grian size and microstructures of sintered body. The phase transformation happened to start at specimen surface and near the pore in the first place, where the change of strain energy during the phase transformation was small and the water vapor that accelerated phase transformation easily diffused.

  • PDF

A study on the Structure and Transformation Rate of Heat Treatment of Forged TAP Housing and Valve for Automotive Parts (단조용 자동차 부품 T/P Housing과 Valve의 열처리에 따른 조직 및 변형 속도에 관하여)

  • 유형종;이호진;이건영;최진일
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.155-158
    • /
    • 2003
  • The effects of Mn, V addition on the behavior of structure and the effects of cooling rate of S20C steel for use of Tn housing and valve for automotive parts have been investigated. Transformation start temperature measured from inflection point of cooling curves has been found out to decrease with increasing cooling rate and to be more sensitive to Mn contents when cooling rate is fast. It was therefore shown that the grain was refined. If there is a big compacting pressure, it is indicated that hardness becomes much greater at surface than inside.

  • PDF

Influence of Nb Addition and Austenitizing Temperature on the Hardenability of Low-Carbon Boron Steels (저탄소 보론강의 경화능에 미치는 Nb 첨가와 오스테나이트화 온도의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.577-582
    • /
    • 2015
  • The present study is concerned with the influence of niobium(Nb) addition and austenitizing temperature on the hardenability of low-carbon boron steels. The steel specimens were austenitized at different temperatures and cooled with different cooling rates using dilatometry; their microstructures and hardness were analyzed to estimate the hardenability. The addition of Nb hardly affected the transformation start and finish temperatures at lower austenitizing temperatures, whereas it significantly decreased the transformation finish temperature at higher austenitizing temperatures. This could be explained by the non-equilibrium segregation mechanism of boron atoms. When the Nb-added boron steel specimens were austenitized at higher temperatures, it is possible that Nb and carbon atoms present in the austenite phase retarded the diffusion of carbon towards the austenite grain boundaries during cooling due to the formation of NbC precipitate and Nb-C clusters, thus preventing the precipitation of $M_{23}(C,B)_6$ along the austenite grain boundaries and thereby improving the hardenability of the boron steels. As a result, because it considerably decreases the transformation finish temperature and prohibits the nucleation of proeutectoid ferrite even at the slow cooling rate of $3^{\circ}C/s$, irrespective of the austenitizing temperature, the addition of 0.05 wt.% Nb had nearly the same hardenability-enhancing effect as did the addition of 0.2 wt.% Mo.

Isothermal Phase Transformations and Stability of Retained Austenite during Quenching and Partitioning Process for 0.15C Steel

  • Jin, Jong-Won;Park, Chulho;Kang, Namhyun
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.89-94
    • /
    • 2017
  • The microstructure and dilatation for 0.15C steels were investigated to define the phase transformation during the quenching and partitioning (Q&P) process. For the one step Q&P dilatation, the isothermal martensite/bainite transformation occurred because the holding temperature was between $M_s$ and $M_f$. The isothermally transformed martensite/bainite and the athermally transformed martensite were produced by a loss of retained austenite. As the holding time increased, new martensite-start ($M_s$) temperature produced from the final quenching process decreased due to the carbon partitioning from the martensite to the retained austenite. This was the direct evidence of increment for the retained austenite stability. For the two step Q&P dilatation, the isothermal bainitic transformation occurred because the partitioning temperature was larger than the $M_s$ and new $M_s$. The partitioning at $400^{\circ}C$ indicated the short incubation period for the bainite transformation than the $350^{\circ}C$ partitioning because the partitioning at $400^{\circ}C$ should acquire the larger thermal driving force for carbon partitioning than the $350^{\circ}C$ partitioning. A quick drop of $M_s$ and short period of bainite incubation for the $400^{\circ}C$ partitioning steel were also the direct evidence of significant effects of carbon partitioning on the stability of retained austenite.

Continuous Cooling Transformation, Microstructure and Mechanical Properties of High-Strength Low-Alloy Steels Containing B and Cu (B과 Cu가 포함된 고강도 저합금강의 연속냉각 변태와 미세조직 및 기계적 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.525-530
    • /
    • 2013
  • This study investigated the continuous cooling transformation, microstructure, and mechanical properties of highstrength low-alloy steels containing B and Cu. Continuous cooling transformation diagrams under non-deformed and deformed conditions were constructed by means of dilatometry, metallographic methods, and hardness data. Based on the continuous cooling transformation behaviors, six kinds of steel specimens with different B and Cu contents were fabricated by a thermomechanical control process comprising controlled rolling and accelerated cooling. Then, tensile and Charpy impact tests were conducted to examine the correlation of the microstructure with mechanical properties. Deformation in the austenite region promoted the formation of quasi-polygonal ferrite and granular bainite with a significant increase in transformation start temperatures. The mechanical test results indicate that the B-added steel specimens had higher strength and lower upper-shelf energy than the B-free steel specimens without deterioration in low-temperature toughness because their microstructures were mostly composed of lower bainite and lath martensite with a small amount of degenerate upper bainite. On the other hand, the increase of Cu content from 0.5 wt.% to 1.5 wt.% noticeably increased yield and tensile strengths by 100 MPa without loss of ductility, which may be attributed to the enhanced solid solution hardening and precipitation hardening resulting from veryfine Cu precipitates formed during accelerated cooling.

Effect of Quenchant Temperature on the Surface Residual Stress in Gas Carburized AISI 8620 Steel (가스침탄 처리한 AISI 8620 강에서 급냉제가 표면잔류응력에 미치는 영향)

  • Jang, C.G.;Hahn, J.H.;Hwang, N.M.;Kim, J.J.;Lim, B.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.2
    • /
    • pp.27-32
    • /
    • 1989
  • The effect of quenchant temperature on the surface residual stress was studied for AISI 8620 steel. Specimens were carburized at $900^{\circ}C$ in all case type furnace using a gas-base atmosphere of methanol cracked and liquefied petroleum gas, and then subjected to single reheat quenchant in oil or salt bath in the temperature range of $60^{\circ}C$ to $300^{\circ}C$. After carburizing and reheat Quenching, residual stress was measured by the hole drilling method. Experimental results showed that the surface residual stress was increased as the quenchant temperature was raised. This is in contrast to the fact that the formation of phase of low transformation strain such as bainite results in lower surface compressive stress. The greater compressive stress observed in specimens Quenched at higher temperature may be attributed to the shifting of the transformation start point farther from the surface, as was reported in other carburizing steels.

  • PDF

Effects of C, Mo and Cr on Hardenability and Mechanical Properties of Boron-Bearing Steels (보론강의 경화능과 인장 특성에 미치는C, Mo, Cr의 영향)

  • Yim, H.S.;Jung, W.Y.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.5
    • /
    • pp.241-247
    • /
    • 2013
  • Hardenability and mechanical properties of boron-bearing steels containing C, Mo and Cr were investigated in this study. Using quench dilatometer, the steel specimens were cooled down to room temperature at different cooling rates to construct continuous cooling transformation diagrams and then the transformation products from austenite were examined. A critical cooling rate was introduced as an index to quantitatively evaluate the hardenability. The C addition to boron-bearing steels did not significantly affect hardenability compared to boron-free steels although it increases the hardenability. With the same content, the Mo addition largely increased the hardenability of boron-bearing steels than the Cr addition because it decreased both the transformation start and finish temperatures at low cooling rates. In particular, the Mo addition completely suppressed the formation of eutectoid ferrite even at the slow cooling rate of $0.2^{\circ}C/s$, whereas the Cr addition nearly suppressed it at the cooling rates above $3^{\circ}C/s$.

Martensitic Transformation Behaviors of Gas Atomized Ti50Ni30Cu20 Powders (Gas atomization으로 제조된 Ti50Ni30Cu20 합금 분말의 상변태 거동)

  • Kim, Yoen-Wook;Chung, Young-Soo;Choi, Eun-Soo;Nam, Tae-Hyun;Im, Yeon-Min
    • Journal of Korea Foundry Society
    • /
    • v.31 no.1
    • /
    • pp.26-30
    • /
    • 2011
  • For the fabrication of bulk near-net-shape Ti-Ni-Cu shape memory alloys, consolidation of Ti-Ni-Cu alloy powders are useful because of their brittle property. In the present study, $Ti_{50}Ni_{30}Cu_{20}$ shape memory alloy powders were prepared by gas atomization and martensitic transformation temperatures and microstructures of those powders were investigated as a function of powder size. The size distribution of the powders was measured by conventional sieving, and sieved powders with the specific size range of 25 to $150\;{\mu}m$ were chosen for this examination. XRD analysis showed that the B2-B19 martensitic transformation occurred in the powders. In DSC curves of the as-atomized $Ti_{50}Ni_{30}Cu_{20}$ powders as a function of powder size, only one clear peak was found on each cooling and heating curve. The martensitic transformation start temperature($M_s$) of the $25-50\;{\mu}m$ powders was $31.5^{\circ}C$. The $M_s$ increased with increasing powder size and the difference of $M_s$ between $25-50\;{\mu}m$ powders and $100-150\;{\mu}m$ powders is only $1^{\circ}C$. The typical microstructure of the rapidly solidified powders showed cellular morphology and very small pores were observed in intercellular regions.