• Title/Summary/Keyword: transfer slab

Search Result 150, Processing Time 0.018 seconds

Two-way Shear Strength Evaluation of Transfer Slab-Column Connections Through Nonlinear FE Analysis (비선형유한요소해석을 통한 전이슬래브-기둥 접합부의 2면 전단강도 평가)

  • Jeong, Seong-Hun;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.315-329
    • /
    • 2018
  • Recently, RC transfer slab systems have been used widely to construct high-rise wall-type apartments for securing parking space or public space. However, it is problem that the design method and structural performance evaluation method developed for thin RC flat slab are still used in the design of the transfer slab whose thickness is very thick and therefore structural behavior is expected to be different from RC flat slab. Thus, for the rational design of the transfer slab, the ultimate shear behavior of the RC transfer slab system is required to be analyzed properly. Accordingly, in the present study, the two-way shear behavior of the transfer slab was analyzed using nonlinear FEM according to various design parameters such as thickness of the transfer slab, strength of concrete, shear span ratio, and reinforcement ratio. In addition, the two-way shear strength evaluations of RC transfer slab by the existing evaluation methods were verified by comparing those with the results of nonlinear FEM analysis.

2D Heat Transfer Model for the Prediction of Temperature of Slab in a Direct-Fired Reheating Furnace (가열로 내 슬랩의 온도 예측을 위한 2차원 열전달 모델)

  • Lee Dong-Eun;Park Hae-Doo;Kim Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.950-956
    • /
    • 2006
  • A mathematical heat transfer model for the prediction of heat flux on the slab surface and temperature distribution in the slab has been developed by considering the thermal radiation in the furnace and transient conduction governing equations in the slab, respectively. The furnace is modeled as radiating medium with spatially varying temperature and constant absorption coefficient. The slab is moved with constant speed through non-firing, charging, preheating, heating, and soaking zones in the furnace. Radiative heat flux which is calculated from the radiative heat exchange within the furnace modeled using the FVM by considering the effect of furnace wall, slab, and combustion gases is applied as the boundary condition of the transient conduction equation of the slab. Heat transfer characteristics and temperature behavior of the slab is investigated by changing such parameters as absorption coefficient and emissivity of the slab. Comparison with the experimental work shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace.

Two-way Shear Behavior Analysis of Transfer Slab-Column Connection with Reverse Drop Panel Through Nonlinear FE Analysis (역드랍 패널 적용 전이슬래브-기둥 접합부의 비선형 유한요소해석을 통한 2면 전단거동 분석)

  • Jeong, Seong-Hun;Kang, Su-Min;Kim, Seung-Il;Lee, Chang-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.103-111
    • /
    • 2020
  • Recently, the use of transfer slab system has increased greatly. However, several construction problems are being encountered owing to its excessive thickness. Therefore, in this study, a transfer slab system that uses a reverse drop panel, which can utilize the facility space of the pit floor by reducing the transfer slab thickness, was considered. To investigate the shear behavior of transfer slab system that uses the reverse drop panel, the two-way shear strength of transfer slab-column connection with the reverse drop panel was analyzed using nonlinear FE analysis. In addition, the two-way shear strength evaluations of transfer slab with the reverse drop panel conducted using the existing evaluation methods were verified by comparing the strengths predicted by those methods with the results of nonlinear FE analysis.

Investigation of Load Transfer Characteristics at Slab Joints In The Floating Slab Track by Equivalent Shear Spring Model (등가 전단 스프링 모델을 이용한 플로팅 슬래브궤도 연결부에서의 하중전달 특성 분석)

  • Jang, Seung-Yup;Ahn, Mi-Kyoung;Choi, Won-Il;Park, Man-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2838-2843
    • /
    • 2011
  • Recently, the floating slab track that can effectively mitigate the vibration and structure-borne noise is being discussed to be adopted. The floating slab track which is a track system isolated from the sub-structure by vibration isolators. Unsimilarly to conventional track and the slab deflection is large. Therefore, the running safety and ride comfort should be investigated. Especially at slab joint since the load cannot be transferred, the possibility that the dynamic behavior of track and train became unstable is high. Thus, in general dowel bar are often installed at slab joints. To determine the appropriate dowel ratio the load transfer characteristics should be investigated. In this study, dowel bar joint is modeled by equivalent shear spring and this model is verified by comparison with experimental results. Using the proven model, the load transfer efficiency and deflection at slab joint according to dowel ratio, and stiffness and spacing of vibration isolator were examined.

  • PDF

A Numerical Study on the Slab Heating Characteristics in a Reheating Furnace with the Formation and Growth of Scale on the Slab Surface (스케일 층의 생성 및 성장을 고려한 가열로 내 슬랩의 승온 특성 해석에 관한 연구)

  • Lee, Dong-Eun;Jang, Jung-Hyun;Kim, Chong-Min;Hong, Dong-Jin;Park, Hae-Doo;Park, Yun-Beom;Kim, Man-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.109-112
    • /
    • 2008
  • In this work, a mathematical heat transfer model of a walking-beam type reheating furnace that can predict the formation and growth of the scale layer, which is produced due to oxidative reaction between the furnace oxidizing atmosphere and the steel surface in the reheating furnace, has been developed. The model can also predict the heat flux distribution within the furnace and the temperature distribution in the slab and scale throughout the reheating furnace process by considering the heat exchange between the slab and its surroundings in the furnace, including radiant heat transfer among the slabs, the skids, the hot gases and the furnace wall as well as the gas convection heat transfer in the furnace. Using the model developed in this work, the effects of the scale layer on the heat transfer characteristics and temperature behavior of the slab is investigated. A comparison is also made between the predictions of the present model and the data from an in situ measurement in the furnace, and a reasonable agreement is founded.

  • PDF

Analysis of Elements for Efficiencies in Magnetically-Coupled Wireless Power Transfer System Using Metamaterial Slab (메타물질 Slab이 포함된 자계 결합 무선 전력 전송 시스템 효율 요소 분석)

  • Kim, Gunyoung;Oh, TaekKyu;Lee, Bomson
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1128-1134
    • /
    • 2014
  • In this paper, the effects of a metamaterial slab with negative permeability in a magnetically coupled wireless power transfer system (WPT) in the overall performance are analyzed quantitatively in terms of the effective quality factors of the loop resonators and coupling coefficient considering the slab losses, based on an equivalent circuit. Using the ideal metamaterial slab(lossless slab), the WPT efficiency is improved considerably by the magnetic flux focusing. However, the practical lossy slab made of RRs or SRRs limits the significant enhancement of WPT efficiency due to the relatively high losses in the slab consisting of RRs or SRRs near the resonant frequency. For the practical loop resonator, other than a point magnetic charge, using the practical lossy metamaterial slab in order to improve the transfer efficiency, the width of the slab needs to be optimized somewhat less than the half of the distance between two loop resonators. For the low-loss slab with its loss tangent of 0.001, the WPT efficiency is maximized at 93 % when the ratio of the slab width and the distance between the two resonators is approximately 0.35, compared with 53 % for the case without the slab. The efficiency in case of employing the high-low slab(loss tangent: 0.2) is maximized at 61 % when the slab ratio is 0.25.

Large-scale cyclic test on frame-supported-transfer-slab reinforced concrete structure retrofitted by sector lead rubber dampers

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Da yang Wang;Ke Jiang;Song Wang
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.383-400
    • /
    • 2024
  • For a conventionally repaired frame-supported-transfer-slab (FSTS) reinforced concrete (RC) structure, both the transfer slab and the beam-to-column and transfer slab-to-column joints remain vulnerable to secondary earthquakes. Aimed at improving the seismic performance of a damaged FSTS RC structure, an innovative retrofitting scheme is proposed, which adopts the sector lead rubber dampers (SLRDs) at joints after the damaged FSTS RC structure is repaired by conventional approaches. In this paper, a series of quasi-static cyclic tests was conducted on a large-scale retrofitted FSTS RC structure. The seismic performance was evaluated and the key test results, including deformation characteristics, damage pattern, hysteretic behaviour, bearing capacity and strains on key components, were reported in detail. The test results indicated that the SLRDs started to dissipate energy under the service level earthquake, and thus prevented damages on the beam-to-column and transfer slab-to-column joints during the secondary earthquakes and shifted the plastic hinges away from the beam ends. The retrofitting scheme of using SLRDs also achieved the seismic design concept of 'strong joint, weak component'. The FSTS RC structure retrofitted by the SLRDs could recover more than 85% bearing capacity of its undamaged counterpart. The hysteresis curves were featured by the inverse "S" shape, indicating good bearing capacity and hysteresis performance. The deformation capacity of the damaged FSTS RC structure retrofitted by the SLRDs met the corresponding codified requirements for the case of the maximum considered earthquake, as set out in the Chinese seismic design code. The stability of the FSTS RC structure retrofitted by the SLRDs, which was revealed by the developed stains of the RC frame and transfer slab, was improved compared with the undamaged FSTS RC structure.

Evaluation on the Compression Capacity of Transfer Slab Systems according to the Variation of Column Length (기둥의 길이변화에 따른 전이슬래브 시스템의 압축성능 평가)

  • Sim, Yeon-Ju;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.695-702
    • /
    • 2016
  • This paper presents compression capacity of transfer system in pilotis subjected to axial load. Recently, transfer system is usually used in low floors of wall-typed apartments when members' sections are suddenly changed between upper walls and bottom columns. It can help transfer loads from the walls to the columns. Especially, a transfer girder system is usually used as one of transfer systems applied to a pilotis. However, the transfer girder system has low constructability and economics. Therefore, the other transfer system with transfer slab was suggested and has been studied. In this paper, to evaluate the compression capacity of transfer slab, tests were conducted on pilotis transfer slab systems subjected to axial load. First of all, two specimens were determined by FEM. The main parameter is length of the bottom columns. The lengh of the bottom columns were 40% and 50% of length of upper walls in the tranfer slab specimens. Results showed that the compression capacity of piloti transfer systems subjected to axial load was affected by length of bottom columns. The compression capacity is 52% higher than design strength for specimen with the bottom column's length of 40% of length of the upper wall and 46% for specimen with the bottom column's length of 50% of length of the upper wall.

POLARIZATION OF LYMAN α EMERGENT FROM A THICK SLAB OF NEUTRAL HYDROGEN

  • AHN, SANG-HTEON;LEE, HEE-WON
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.3
    • /
    • pp.195-202
    • /
    • 2015
  • Star forming galaxies found in the early universe exhibit asymmetric Lyα emission line that results from multiple scattering in a neutral thick medium surrounding the Lyα emission source. It is expected that emergent Lyα will be significantly polarized through a large number of resonance scattering events followed by a number of successive wing scatterings. In this study we adopt a Monte Carlo method to calculate the polarization of Lyα transferred in a very thick static slab of HI. Resonantly scattered radiation associated with transitions between is only weakly polarized and therefore linear polarization of the emergent Lyα is mainly dependent on the number of off-resonant wing scattering events. The number of wing scattering events just before escape from the slab is determined by the product of the Doppler parameter a and the line center optical depth τ0, which, in turn, determines the behavior of the linear polarization of Lyα. This result is analogous to the study of polarized radiative transfer of Thomson scattered photons in an electron slab, where the emergent photons are polarized in the direction perpendicular to the slab when the scattering optical depth is small and polarized in the parallel direction when the slab is optically thick. Our simulated spectropolarimetry of Lyα shows that the line center is negligibly polarized, the near wing parts polarized in the direction parallel to the slab and the far wing parts are polarized in the direction perpendicular to the slab. We emphasize that the flip of polarization direction in the wing parts of Lyα naturally reflects the diffusive nature of the Lyα transfer process in thick neutral media.

Performance Analysis of Energy-Slab Ground-Coupled Heat Exchanger (에너지슬래브 지중열교환기의 성능 분석)

  • Choi, Jong-Min;Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.487-496
    • /
    • 2012
  • Recently, utilization of building foundations as ground-coupled heat exchangers has attracted much attention because they reduce the cost and enhance the heat transfer. The objective of this study is to evaluate the performance of energy-slab ground-coupled heat exchanger installed in a commercial building. In order to demonstrate the energy transfer characteristics of the energy-slab, experiments were conducted from October 2010 to September 2011. The 1-year measurement results showed that the mean EWTs of brine returning from the energy-slab were $9.6^{\circ}C$ in heating season and $24.9^{\circ}C$ in cooling season, which were in a range of design target temperatures. In addition, the geothermal heat pump system with the energy-slab showed on-off operation according to the setting temperatures of secondary fluid in water storage tank. The results also showed that the energy-slab extracted heat of 198.6 kW from the ground and injected heat of 318.9 kW to the ground, respectively.