• Title/Summary/Keyword: transfer coefficient ($K_t$)

Search Result 95, Processing Time 0.019 seconds

Residence Time Distributions of Liquid pbase Flow and Mass Transfers in the Trickle Bed Reactor (점적상 반응기에서 액상흐름의 체류시간 분포 및 물질전달)

  • Kim, Ki-Chang
    • Journal of Industrial Technology
    • /
    • v.6
    • /
    • pp.19-31
    • /
    • 1986
  • The residence time distribution of liquid flow in a 4.0cm diameter column packed with porous $Al_2O_3$ spheres of 0.37cm diameter were measured with pulse injections of a tracer under cocurrent trickling flow conditions. The mean residence time of liquid flow and liquid hold-up calculated by the transient curve of tracer were unaffected by gas flow rates under experimental ranges of liquid flow rates from 2.4 to $4.5(kg/m^2\;sec)$ and gas flow rates from 0 to $0.13(kg/m^2\;sec)$. The axial dispersion coefficient of liquid stream and apparent diffusivity of tracer in a micropore of solid particle were estimated from the response curve of tracer. The calculated Peclet No. were increased in ranges of 68-to 82 with a increasing of liquid mass velocity, and the external effective contacting efficiency between liquid and solid which can be expressed. by $(D_i)_{app}/D_i$ varied in ranges of 0.54 to 0.68 depending on the liquid flow rates. The gas to liquid(water) volumetric mass transfer coefficient were determined from desorption experiments with oxygen at $25^{\circ}C$ and 1 atm. The measured mass transfer coefficients were increased with liquid flow rates and the effect of gas flow rates on the mass transfer coefficient was insignificant.

  • PDF

Analysis of Hot Compression Process of Aluminum 6082 Billet using Nonlinear Heat Transfer Coefficient (비선형 열전달 계수를 사용한 알루미늄 6082 빌렛의 열간 압축 공정 해석)

  • Jeon, H.W.;Suh, C.H.;Kwon, T.H.;Park, C.D.;Jeon, J.H.;Choi, H.Y.;Kang, G.P.
    • Transactions of Materials Processing
    • /
    • v.28 no.1
    • /
    • pp.5-14
    • /
    • 2019
  • In order to reduce the weight of automobile parts, automobile parts using aluminum alloy are being developed. Aluminum alloy for automobile parts is mainly made of Al6xxx (Al-Mg-Si) type alloy, which is excellent in hot forming property, and it can increase mechanical properties by the use of heat treatment. In this study, hot forming was performed using Al6082. Before the hot forming, the forming analysis was performed using the DEFORM-3D finite element analysis program in this case. For the forming analysis, the heat transfer coefficient was derived from the experiment, and the forming analysis was performed by applying it. At the forging analysis, the temperature of Al6082 material was set to 813K and that of the mold was set to room temperature. After the forging analysis, the experiment was performed, and the forging analysis and the experimental results were compared.

Experimental Investigation of the Combined Effects of Heat Exchanger Geometries on Nucleate Pool Boiling Heat Transfer in a Scaled IRWST (열교환기 형상이 축소한 IRWST 내부의 풀핵비등에 미치는 복합적인 영향에 대한 실험적 연구)

  • Kang, Myeong-Gie;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • In an effort to determine the combined effects of major parameters of heat exchanger tubes on the nucleate pool boiling heat transfer in the scaled in-containment refueling water storage tank (IRWST), a total of 1,966 data for q'quot; versus ${\Delta}T$ has been obtained using various combinations of tube diameters, surface roughness, and tube orientations. The experimental results show that (1) increased surface roughness enhances heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e.,enhanced heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e., enhanced heat transfer due to liquid agitation by bubbles generated and reduced heat transfer by the formation of large vapor slugs and bubble coalescence are different in two regions of low heat fluxes (q'quot; $\leq$50kW/$m^2)$ and high heat fluxes (q'quot; $\geq$50kW/$m^2)$ depending on the orientation of tubes and the degree of surface roughness, and (3) the heat transfer rate decreases as the tube diameter is increased for both horizontal and vertical tubes, but the effect of tube diameter on the nucleate pool boiling heat transfer for vertical tubes is greater than that for horizontal tubes. Two empirical heat transfer correlations for q'quot;, one for horizontal tubes and the other for vertical tubes, are obtained in terms of surface roughness $({\varepsilon})$ and tube diameter (D). In addition, a simple empirical correlation for nucleate pool boiling heat transfer coefficient $(h_b)$ is obtained as a function of heat flux (q'quot;) only.ucleate pool boiling heat transfer coefficient $(h_b)$ is obtained as a function of heat flux (q'quot;) only.

  • PDF

Heat Transfer Characteristics of 2 t/h-Class Modular Water-Tube-Type Boiler (모듈형 2 t/h급 수관식 보일러의 열전달 특성)

  • Ahn, Joon;Hwang, Sang-Soon;Kim, Jong-Jin;Kang, Sae-Byul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1127-1133
    • /
    • 2012
  • A finned-tube-type evaporator module has been proposed for a 2 t/h-class water-tube-type industrial boiler with multiple burners. The geometry of the fins was changed at each module to equalize the evaporation. The modules were designed by considering the energy balance at each row rather than by following a conventional bulk design procedure. The designed module was built into a 2 t/h-class water-tube-type boiler, and its performance was tested. A numerical simulation was also conducted to evaluate the two- or three-dimensional effects of factors such as the inlet conditions. The numerical simulation also included the conjugate heat transfer problem to predict the fin tip temperature. The heat transfer coefficient with fins is lower than that obtained from the empirical correlation of a bare tube. The fin tip temperature from CFD is higher than that from the analytical solution.

Heat Transfer in a Horizontal Mantle Heat Exchanger for a Thermosyphon-driven Flat Plate Collector (자연대류형 태양열 온수기용 맨틀 축열조의 열전달 현상에 관한 연구)

  • Cho, H.J.;Seo, T.B.;Kang, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 2001
  • A horizontal mantle heat exchanger for a thermosyphon-driven SDHW(solar domestic hot water) was numerically simulated and fluid flow and heat transfer in the annulus of the mantle heat exchanger were quantitatively investigated. The Reynolds number, the location of the inlet, and the gap of the annulus were selected as the important design variables. The effects of the design variables on the heat transfer characteristics were thoroughly studied. Based on the numerical results, a correlation for predicting the heat transfer coefficient was suggested as the conclusion of this study.

  • PDF

Thermo-mechanical Simulation of Boron Steel Cylinders during Heating and Rapid Cooling (원통형 보론강을 사용한 가열-급냉공정에서의 열변형 해석)

  • Suh, C.H.;Kwon, T.H.;Kang, K.P.;Choi, H.Y.;Kim, Y.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.475-481
    • /
    • 2014
  • Water quenching is one method of cooling after hot forming, which is presently being used for the manufacturing of automobile parts. The formed parts at room temperature are heated and then cooled rapidly in a water bath to produce high strength. The formed parts may undergo excessive thermal distortion during the water quench. In order to predict the distortion during water quenching, a coupled thermo-mechanical simulation is needed. In the current study, the simulation of heating and cooling of boron steel cylinders was performed. The material properties for the simulation were calculated from JMatPro, and the convective heat transfer coefficient was obtained from experimental tests. The results show that the thermal distortion and the residual stresses are well predicted by the coupled simulation.

Free Convection due to Vertical Isothermal Wires Immersed in Water near its Density Extremum (최대밀도점 부근의 물 속에 잠겨있는 수직 등온 강선에 의한 자연대류)

  • Eom, Y.K.;Riu, K.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.338-350
    • /
    • 1996
  • A numerical analysis is carried out to study the two-dimensional steady state natural convection from vertical wires immersed in cold pure water. The surface of the wire is $0^{\circ}C$ unifrom temperature. Results of the analysis are presented for free stream temperature from $0^{\circ}C$ to $25^{\circ}C$ and the aspect ratio N from $5.26{\times}10^{-3}$ to $1.0{\times}10^{-3}$. The effects of the density extremum and aspect ratio on the flow pattern and the heat transfer characteristics are discussed As the aspect ratio N becomes larger, in the range of $1.0^{\circ}C{\leq}T_{\infty}{\leq}4.4^{\circ}C$ and $6{^{\circ}C}{\leq}T_{\infty}{\leq}17^{\circ}C$, the effect of Pr number on the heat transfer is shown to be more significant than the aspect ratio. Investigating into the effect of the density extremum on the heat transfer from wires, the new heat transfer correlations are suggested with the relation of average Nu mumber vs. modified Ra number. Here, the coefficient values C of correlations are presented as the function of density extremum parameter $R^*$. The effects of the density extremum parameter are also discussed.

  • PDF

Prediction of Phase Transformation and Mechanical Property of Carbon Steel in Quenching based on Finite Element Analysis (유한요소해석을 이용한 탄소강의 담금질 공정에 대한 상변태 및 기계적 성질 예측)

  • Kim, D.K.;Jung, K.H.;Kang, S.H.;Im, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.173-176
    • /
    • 2009
  • A great emphasis has been placed on the design of heat treatment process to achieve desired microstructure and mechanical property of final product. In this study, finite element analysis was carried out to predict temperature, microstructure and hardness of eutectoid steel after water quenching. Convective heat transfer coefficients were determined by inverse analysis using surface temperatures measured with three different installation methods of thermocouples. Finally, the effect of convective heat transfer coefficients on the prediction of temperature history and hardness was analyzed by comparing experimental and simulation results.

  • PDF

Transfer Force Characteristics of Seedling Bed Transfer Equipment Using Pneumatic Cylinder for Automation of Plant Factory (식물공장 자동화를 위한 공압 실린더를 이용한 육묘베드 이송장치의 이송력 특성)

  • Min, Young-Bong;Park, Sang-Min;Lee, Gong-In;Kim, Dong-Ouk;Kang, Dong-Hyun;Moon, Sung-Dong
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.155-165
    • /
    • 2012
  • This study was performed to offer the data for design of the seedling bed transfer equipment to make the automation of working process in a plant factory. The seedling bed transfer equipment pushing the seedling bed with bearing wheels on the rail for interconnecting each working process by a pneumatic cylinder was made and examined. The examined transfer force to push the seedling bed with a weight of 178.9 N by the pneumatic cylinder with length of 60 cm and section area of 5 $cm^2$ was measured by experiments. The examined transfer forces was compared with theoretical ones calculated by the theoretical formula derived from dynamic system analysis according to the number of the seedling bed and pushing speed of the pneumatic cylinder head at no load. The transfer function of the equipment with the input variable as the pushing speed $V_{h0}$(m/s) and the output variable as the transfer force f(t)(N) was represented as $F(s)=(V_{h0}/k)(s+B/M)/(s(s^2+Bs/M+1/(kM))$ where M(kg), k(m/N) and B(Ns/m) are the mass of the bed, the compression coefficient of the pneumatic cylinder and the dynamic friction coefficient between the seedling bed and the rail, respectively. The examined transfer force curves and the theoretical ones were represented similar wave forms as to use the theoretical formular to design the device for the seedling bed transfer. The condition of no vibration of the transfer force curve was $kB^2>4M$. The condition of transferring the bed by the repeatable impact and vibration force according to difference of transfer distance of the pneumatic cylinder head from that of the bed was as $Ce^{-\frac{3{\pi}D}{2\omega}}<-1$, where ${\omega}=\sqrt{\frac{1}{kM}-\frac{B^2}{4M^2}}$, $C=\{\frac{\frac{B}{2M}-\frac{1}{kB}}{\omega}\}$, $D=\frac{B}{2M}$. The examined mean peak transfer force represented 4 times of the stead state transfer force. Therefore it seemed that the transfer force of the pneumatic cylinder required for design of the push device was 4Bv where v is the pushing speed.

Heat Transfer Chracteristics in a Fluidized bed Heat Storage System Using Encapsulated PCM (캡슐화된 PCM을 이용한 유동층 축열조에서 열전달 특성 연구)

  • Yoon, Y.H.;Han, G.Y.;Kang, Y.H.;Kwak, H.Y.;Lee, T.K.;Jeon, M.S.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.89-94
    • /
    • 1998
  • The heat transfer characteristics of a fluidized bed latent heat storage system using encapsulated PCM was investigated. The cylindrical test section has the dimension of 50 mm I.D. and 40 cm in height. The phase change material(PCM) was the sodium acetate and was encapsulated by the multiple layers of PMMA and paraffin wax. The size of encapsulated PCM was $2{\sim}3mm$ and melting point was $58^{\circ}C$. The instantaneous heat storage and heat release rates were determined and the instantaneous heat transfer coefficient based on the fluidized bed volume was also determined. The effect of inlet temperature and velocity of heat transfer fluid on the heat transfer coefficient was also investigated.

  • PDF