• Title/Summary/Keyword: transfatty acid

Search Result 2, Processing Time 0.015 seconds

The Effect of Hydrated Soybean Oil on Quality of Popped Rice for Preparing Salyeotgangjung (쌀엿강정용 팽화쌀 품질에 대한 대두경화유의 영향)

  • Kim, Myoung-Ae
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.6
    • /
    • pp.679-684
    • /
    • 2006
  • In this experiment, I used three samples of oils. The oils that I used were hydrated soybean oil, pure soybean oil and regular soybean oil. The group of rice was fried in the each sample of oil that had not been used for a few seconds. Rice was used after frying at 230-235$^{\circ}C$ every four hours terms and total frying hours was 12 hours. The hydrated soybean oils was least affected in rancidity. The other two oils were more affected in rancidity than the hydrated soybean oil. However, the trans fatty acid in hydrated soybean oil was 36.5%. The diameter of the poped rice that was fried in pure soybean oil and regular soybean oil that had been used 12 for hours was reduced while the diameter of the popped rice fried in the hydrated soybean oil was not reduced. Also, the groups of rice fried in the pure and the regular soybean oil that had been used for 12 hours reduced the hardness in rice while the group that fried in the hydrated soybean oil at the 12th hour kept the hardness well. In sensory evaluation, rancidity order was found apparently in the pure soybean oil that had been used for 12 hour and in the regular soybean oil that have been used for eight hours and 12 hours. Only the hydrated soybean oil did not have distinctive rancidity order at all. The degree of the crispiness was reduced in the pure soybean oil and in the regular soybean oil at 12th hour frying. However, the hydrated soybean oil preserved the crispiness well until the end of 12 hours of frying. In overall preference test, the pure and regular soybean oil that had been used for 12 hour were not preferable. In conclusion, I found that the group fried in the hydrated soybean oil was better in every evaluation than the groups fried in the pure soybean oil and in regular soybean oil. The hydrated Soybean oil may be better to be used in food manufacturing if the trans fatty acid in the hydrated soybean oil can be reduced.

The Effect of Storage Period of Piggery Slurry on Odorous Compound Concentration from Manure at the Pilot Scale (모형 슬러리 돈사 활용한 분뇨의 저장기간별 악취물질 농도 조사)

  • Lee, K.H.;Cho, S.B.;Park, K.H.;Yang, S.H.;Lee, J.Y.;Ohh, S.J.;Kim, I.H.;Choi, D.Y.;Yoo, Y.H.;Hwang, O.H.
    • Journal of Animal Environmental Science
    • /
    • v.18 no.sup
    • /
    • pp.29-34
    • /
    • 2012
  • This study was conducted to investigate the effect of storage time of manure on the concentration of odorous compounds. Levels of odorous compounds were measured from manure incubated in $20^{\circ}C$ for 6 wk in pilot chamber whose structure is similar to slurry pit. Levels of short chain fatty acids were decreased (p<0.05) by 4,159, 1,925, 844, and 483 ppm as storage time increased as 0, 2, 4, and 6wk, respectively. Transfatty acid level was not changed for 2wk but decreased (p<0.05) afterwards (levels were 250, 248, 151, and 61 ppm at 0, 2, 4, 6wk, respectively). Levels of phenol compounds were decreased (p<0.05) by 68, 48, 26, and 9 as storage time increased as 0, 2, 4, 6wk, respectively. Phenol concentration was increased whereas p-cresol level was decreased as storage time increased showing ratios of phenol and p-cresol were 6:94, 34:66, 51:49, and 67:33 at 0, 2, 4, and 6wk, respectively. Concentration of indole compounds was not different for 2wk but increased (p<0.05) after 4wk. The ratios of indole and skatole were 71:29, 42:58, 28:72, and 36:64 at 0, 2, 4, and 6wk, respectively. Skatole concentration was increased as storage time increased. Therefore, our current results indicate that levels of volatile fatty acid and phenol compounds were deceased but indole compounds were increased as manure storage time was increased.