• 제목/요약/키워드: transducers

Search Result 855, Processing Time 0.03 seconds

Design of Micro-structured Small Scale Energy Harvesting System for Pervasive Computing Applications (편재형 컴퓨팅을 위한 미세구조 에너지 하베스팅 시스템의 구조 설계)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.918-924
    • /
    • 2009
  • In this paper, we designed micro-structured electromagnetic transducers for energy harvesting and verified the performance of proposed transducers using finite element analysis software, COMSOL Multiphysics. To achieve higher energy transduce efficiency, around the magnetic core material, three-dimensional micro-coil structures with high number of turns are fabricated using semiconductor fabrication process technologies. To find relations between device size and energy transduce efficiency, generated electrical power values of seven different sizes of transducers ($3{\times}3\;mm^2$, $6{\times}6\;mm^2$, $9{\times}9\;mm^2$, $12{\times}12\;mm^2$, $15{\times}15\;mm^2$, $18{\times}18\;mm^2$, and $21{\times}21\;mm^2$) are analyzed on various magnetic flux density environment ranging from 0.84 T to 1.54 T and it showed that size of $15{\times}15\;mm^2$ device can generate $991.5\;{\mu}W$ at the 8 Hz of environmental kinetic energy. Compare to other electromagnetic energy harvesters, proposed system showed competitive performance in terms of power generation, operation bandwidth and size. Since proposed system can generate electric power at very low frequency of kinetic energy from typical life environment including walking and body movement, it is expected that proposed system can be effectively applied to various pervasive computing applications including power source of embodied medical equipment, power source of RFID sensors and etc. as an secondary power sources.

A Study on Frequency Characteristics According to the Output Transmission Method of Round Window Driving Middle Ear Implants (정원창 구동형 인공중이의 출력 전달 방식에 따른 주파수 특성 연구)

  • Seong, KiWoong;Shin, DongHo;Na, SungDae;Lee, JyungHyun;Kim, MyoungNam;Cho, Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.183-187
    • /
    • 2018
  • In this paper, we investigated the efficiency according to the output transmission method of the round window driving type AMEIs (active middle ear implants) through the cadaveric experiment. For the experiment, we fabricated DRT (direct rod transducer) and FMT (floating mass transducer) type vibrational transducers based on our previous studies and conducted their output characteristics were measured. TCBT (tri-coil bellows transducer) and DFMT (differential floating mass transducer) were implemented with the same driving force and electrical characteristics as one of DRT and FMT, respectively. In the experiment using three human temporal bone, normal stapes vibration was measured with 1 Pa in front of tympanic membrane, and then was compared with each output of transducers. From the comparison, the DRT type vibration transducer was superior in overall energy transfer efficiency, especially in the low frequency range. There was no difference in implantation difficulty between the two transducers. The results of this study suggest that the DRT type vibrational transducer is more efficient and needs further study to overcome the low frequency degradation in round window approaching with FMT.

Lumped Model Parameter Estimation of Floating Mass Transducers based on Sequential Quadratic Programming Method for IMEHDs (Sequential Quadratic Programming 방법을 이용한 인공중이용 플로팅 매스 트랜스듀서의 집중 모델 파라미터 추정)

  • Park, I.Y.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.59-64
    • /
    • 2011
  • In this paper, the lumped element model parameter estimation method and its implemented estimation software for fabricated floating mass transducers of IMEHDs have been presented so that the estimated parameter values could be compared with the designed ones and applied to predict the output performance when the transducers were implanted into human ears. The presented method is based on the sequential quadratic programming (SQP) for estimating parameters in the transducer's lumped model and has been implemented by the use of LabVIEW graphical language. Using the implemented estimation software, the accuracy of parameter estimation has been verified and our implemented estimation method has been evaluated by the comparison of the estimated transducer parameter values with the designed ones for a practically fabricated floating mass transducer for IMEHDs.

One-Sided Nondestructive Evaluation of CFRP Composites By Using Ultrasonic Sound (초음파를 이용한 CFRP 복합재의 일방향 비파괴 평가)

  • Im, Kwang-Hee;Zhang, Gui-Lin;Choi, Sung-Rok;Ye, Chang-Hee;Ryu, Je-Sung;Lim, Soo-Hwan;Han, Min-Gui;Hsu, David K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.47-52
    • /
    • 2011
  • It is well known that stiffness of composites depends on layup sequence of CFRP(carbon fiber reinforced plastics) laminates because the layup of composite laminates influences their properties. Ultrasonic NDE of composite laminates is often based on the backwall echoes of the sample. A pair of such transducers was mounted in a holder in a nose-to-nose fashion to be used as a scanning probe on composites. Miniature potted angle beam transducers were used (Rayleigh waves in steel) on solid laminates of composites. Experiments were performed to understand the behavior of the transducers and the nature of the waves generated in the composite (mode, wave speed, angle of refraction). C-scan images of flaws and impact damage were then produced by combining the pitch-catch probe with a portable manual scanner known as the Generic Scanner ("GenScan"). The pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave to fiber orientation of the CFRP composites, including low level porosity, ply waviness, and cracks. Therefore, it is found that the experimentally Rayleigh wave variation of pitch-catch ultrasonic signal was consistent with numerical results and one-side ultrasonic measurement might be very useful to detect the defects.

Design of Matching Layers for high Efficiency-wide band Ultrasonic Transducers (고출력 광대역 초음파 탐촉자를 위한 정합층 설계)

  • Kim, Yeon-Bo;Roh, Yong-Ae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.82-89
    • /
    • 1996
  • Application fields of ultrasonic transducers can be divided into two categories, a high ultrasonic resolution required field and a high ultrasonic power required field. This paper is aimed to determine the optimal properties of the matching layers of the transducer for each of the applications. Further, it is aimed to optimize the properties of the matching layers that show satisfactory performances for both of the application fields. Through the direct time domain analysis of the transmission and reflection behavior of the ultrasonic wave, apart from the conventional equivalent circuit analysis, and Fourier transformation of its results, we found the optimum acoustic impedances of the matching layers. The newly determined layers provide much better transducer performance-57% at most-than those obtained with conventional design methods. Based on the results, we also found the optimal acoustic impedances of the layers good for both of the application fields. For te optimization, we developed a new transducer performance evaluation parameter that can be applied to any type of ultrasonic transducers.

  • PDF

Development and Characterization of Ultrasonic transducers for High Temperature Contact Measurement (고온 접촉식 탐상용 초음파 탐촉자 개발 및 평가)

  • Kim, Ki-Bok;Kim, Byoung-Geuk;Lee, Seung-Seok;Yoon, Nam-Won;Yoon, Dong-Jin;Ahn, Yoon-Kook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.14-20
    • /
    • 2003
  • Piezoelectric ultrasonic transducers for high temperature contact measurement were developed. These high temperature ultrasonic transducers (HTUT) consisted of bismuth titanate piezoceramic element whose Curie temperature is higher than $600^{\circ}C$, a backing material of the mixture of tungsten powder and inorganic binder, an inner alumina tube, a wear Plate and a housing. The operational frequencies or the HTUT were 1.04 and 2.08 MHz, respectively. Various commercially available couplants for high temperature were evaluated and compared. As a couplant for high temperature ultrasonic testing between HTUT and test specimen, gold epoxy was selected. The peak amplitude of pulse-echo signals from steel test specimen decreased with increasing temperature. The operational temperature of the HTUT reached up to $500^{\circ}C$ at which the continuous contact measurement was possible.

The Application of Ultrasonic Spectroscopy System for Phase Transition of Liquid Crystal (액정의 상전이 측정에 대한 초음파 spectroscopy 시스템의 적용)

  • Kim, Jeong-Koo;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.27 no.4
    • /
    • pp.31-35
    • /
    • 2004
  • A new measuring system for ultrasonic spectroscopy was constructed, utilizing PVDF [poly(vinylidene fluoride)] polymer films as wideband transducers. In a test of its performance, this measuring system was successfully applied to study of the nematic-isotropic phase transition in MBBA(p-methoxybenzylidene-p-n-butylan iline) liquid crystal. We could be confirmed that the phase transition in MBBA is $47^{\circ}C$, which is agree with the exciting optical method. The dependence of frequency on the phase transition was not observed, and but Maximum ultrasonic amplitude is measured for the resonance frequency 2MHz in PVDF transducers, These results shows that the spectroscopy with PVDF transducers takes advantage of studying the transient phenomena. When our apparatus is applied in medical purposes, It will be possible diagnostic for sickle-cell anemia and arterial sclerosis.

  • PDF

The Determination of Transducer Locations for Active Structural Acoustic Control of the Radiated Sound from Vibrating Plate (평판에서 방사되는 소음의 능동구조소음제어를 위한 변환기의 위치결정)

  • 김흥섭;홍진석;이충휘;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.694-701
    • /
    • 2002
  • In this paper, through the study on locations of structural transducers for active control of the radiated sound from the vibrating plate, the active structural acoustic control (ASAC) system is proposed. And, for the evaluation of the proposed location, the experiment of the active structural acoustic control is implemented using the multi-channel filtered-x LMS algorithm and an additional filter (Acoustic Prediction Filter) to estimate the radiated sound using the acceleration signals of the plate. The structural transducers are piezoceramic actuator (PZT) and accelerometer. PZT is used as an actuator to reduce the vibration and the radiated sound. To maximize the control performance, each PZT actuator is located at the position that has the largest control sensitivity of the plate bending moment in the direction of x and y coordinates and the optimal PZT location is validated experimentally. Also, to find the acoustic prediction filter accurately, two accelerometers are located at the positions that have the largest radiation efficiencies of the plate, and the proposed locations are validated by simulation using the Rayleigh integral. The multi-channel filtered-x LMS algorithm is introduced to control a complex 2-D structural vibration mode. Finding the locations of structural transducers for active structural acoustic control of the radiated sound, the active structural acoustic control (ASAC) system can be presented and validated by experiments using a real time control system.

The Study of Pressure Vacuum Measurement Techniques Using Ultrasonic Acoustic Impedance Transducers (초음파 음향임피던스 변환기를 이용한 저압 저진공 측정기술 연구)

  • Hong, S.S.;Shin, Y.H.;Cho, S.H.;Ahn, B.Y.;Lim, J.Y.;Choi, I.M.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.319-325
    • /
    • 2010
  • Pressure vacuum measurement technique using acoustic impedance change of ultrasonic transducers was studied. The sensor has been setup using two air-coupled ultrasonic transducers, one as a transmitter and the other as a receiver, and put it into vacuum chamber and measured pressure versus ultrasonic amplitude. The result confirms that the standard deviations of four repeat measurements were from 0.0093 to 0.3325 at pressure 6.66 kPa to 202.65 kPa(about two atmosphere), and the relative percents were 0.018% and 0.164% at pressure 133.32 kPa and 202.65 kPa, respectively.