• 제목/요약/키워드: transducer design

Search Result 383, Processing Time 0.023 seconds

Development of Ultrasonic Transducer for Nondestructive Evaluation of Whole Fruit (과실 비파괴평가용 초음파 변환기 개발)

  • Kim, K.B.;Lee, S.D.;Kim, M.S.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.269-275
    • /
    • 2007
  • In this study, ultrasonic transducers for non-destructive contact measurement of whole fruits were developed. The design parameters for ultrasonic transducer such as acoustical impedance of fruits, kinds of piezoelectric materials, ultrasonic wave frequency, and transducer diameter were investigated. In order to match the acoustical impedance between piezoelectric material and fruit, various materials were fabricated and evaluated. Also to control the sensitivity and bandwidth of the ultrasonic transducer, various backing materials were fabricated and evaluated. Especially, the wear plate of the ultrasonic transducer was designed and fabricated considering the curvature of fruit. The central frequencies of two developed ultrasonic transducers were about 100 kHz and 200 kHz, respectively. With the developed ultrasonic transducers, non-destructive evaluation of the fruit will be possible.

Design of Vibrating Transducer for Implantable Middle Ear Hearing Aid (이식형 중이 청각보조기를 위한 진동 트랜스듀서의 설계)

  • 박형욱
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.535-544
    • /
    • 1996
  • In this paper, we analyzed the coil-magnet type vibrating transducer for the implantable middle ear hearing aid which is appropriate for patient's hearing level, and an experimental transducer system is designed For the objective and quantitative analysis of the transducer, a theoretical equivalent model containing coil, magneto and inner ear is developed To perform effective evaluation of the transducer, a transforming ratio Tr is introduced and its range that is suitable for practical implantable middle ear hearing device is foun4 The result of applying physical parameters of ear system to the proposed analytical model shows that frequency response of the coil magrlet type vibrator is predominantly governed by resistive impedance of the coil rather than inertia effect of the magnet and the inner parameters. In addition, we realized an experimental middle ear hearing aid system to show the theoretical validity of designed system and this will provide the basis of the development for actually implantable system.

  • PDF

The Design of Broadband Ultrasonic Transducers for Fish Species Identification - Control of the Resonance Frequency of a Piezoelectric Transducer with Two Pair of Electodes - (어종식별을 위한 광대역 초음파 변환기의 설계 -I - 전극분할형 압전진동자의 주파수특성 제어 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.3
    • /
    • pp.183-188
    • /
    • 1997
  • A method for designing a broadband transducer was investigated experimentally. Control of the resonance frequency of a Piezoelectric circular transducer with two pairs of electrodes was achieved by varying the inductance of external coil connected across the terminal of one pair of electrodes of transducer. The conductance curves of transducer in water were obtained as a function of the inductance value in mH of the coil used in the tuning. As the tuning inductance is increased in value, the resonance frequency is reduced toward the fundamental frequency of 50 kHz. This interesting result suggest that it is possible to produce a continuously tunable transducer covering a frequency range between 61.3 kHz and 121.7 kHz by varying the inductance value of external coil from 2.7 mH to 15.0 mH. One of other problems in the design and construction of such broadband transducer is the transducer efficiency, but this will be the subject of our future work.

  • PDF

Design of High Efficiency Differential Electromagnetic Type Transducer for Implantable Middle Ear System (이식형 인공중이 시스템을 위한 고효율 차동 전자 트랜스듀서의 설계)

  • Song, Byung-Seop;Ro, Chul-Kyun;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.171-182
    • /
    • 2002
  • The differential electromagnetic transducer for IME(implantable middle ear) system, which have two small permanent magnets glued with the same pole facing each other in the coil, has high vibration efficiency and does not influenced by external magnetic field. In this paper, using finite element method, highly efficient structure of the transducer was proposed and vibration force of the transducer was calculated by electromagnetic theory. And the necessary vibration force of transducer to transmit the sound signal to inner ear when the transducer is attached at stapes was calculated and the design parameters of the transducer were investigated. Using the parameters, the differential electromagnetic transducer was manufactured in small size to implant in confined human middle ear. And it was examined by unloaded and loaded vibration experiment using temporal bone sampled from cadaver.

Optimal design of a concave annular array transducer to generate high intensity focused ultrasound (고강도 집속 초음파 발생용 오목한 환상형 배열 트랜스듀서의 최적설계)

  • Choi, Euna;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.452-465
    • /
    • 2016
  • In this study, the structure of a concave annular array transducer was optimized to generate high intensity focused ultrasound for medical therapeutic application. The transducer has a phased array structure composed of several concentric channels that have 40 mm as the radius of curvature. We derived theoretical equations to analyze the sound field of the transducer and verified the validity of the equations by comparing the results calculated by the equations with those from finite element analyses. We also checked the possibility of dynamic focusing at around the geometric focal point. Further, the level of a grating lobe occurring at an unwanted position in the transducer sound field was confirmed to be reducible through the relation between the number of channels and the frequency of the transducer. Hence, the structure of the transducer was optimized to place the main lobe within a specific range from the zenith while systematically reducing the level of the maximum sidelobe including the grating lobe. The designed structure showed the performance better than that targeted at all the focal points.

Analysis on an improved resistance tuning type multi-frequency piezoelectric spherical transducer

  • Qin, Lei;Wang, Jianjun;Liu, Donghuan;Tang, Lihua;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.435-446
    • /
    • 2019
  • The existing piezoelectric spherical transducers with fixed prescribed dynamic characteristics limit their application in scenarios with multi-frequency or frequency variation requirement. To address this issue, this work proposes an improved design of piezoelectric spherical transducers using the resistance tuning method. Two piezoceramic shells are the functional elements with one for actuation and the other for tuning through the variation of load resistance. The theoretical model of the proposed design is given based on our previous work. The effects of the resistance, the middle surface radius and the thickness of the epoxy adhesive layer on the dynamic characteristics of the transducer are explored by numerical analysis. The numerical results show that the multi-frequency characteristics of the transducer can be obtained by tuning the resistance, and its electromechanical coupling coefficient can be optimized by a matching resistance. The proposed design and derived theoretical solution are validated by comparing with the literature given special examples as well as an experimental study. The present study demonstrates the feasibility of using the proposed design to realize the multi-frequency characteristics, which is helpful to improve the performance of piezoelectric spherical transducers used in underwater acoustic detection, hydrophones, and the spherical smart aggregate (SSA) used in civil structural health monitoring, enhancing their operation at the multiple working frequencies to meet different application requirements.

Analysis for Anti-shock Characteristics of Underwater Acoustic Transducers to the Explosive Shock (수중폭발충격에 대한 수중음향 트랜스듀서의 내충격 특성 해석)

  • Goh, Byeong-Jun;Seo, Hee-Seon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1108-1114
    • /
    • 2006
  • Underwater acoustic transducers can be exposed to a underwater explosive shock caused by various types of underwater weapon. So, a robust anti-shock design is required for transducers to endure the underwater explosive shock. To check the anti-shock characteristics of a transducer, underwater explosive shock test is needed. The conditions of underwater explosive shock test are set up referring to various oversea explosive shock test specifications, and the explosive shock pressure values are calculated according to those conditions. Transient analyses art: carried out for two kinds of underwater acoustic transducer model to verify the anti-shock characteristics. The applied model has robust anti-shock characteristics enough to endure the explosive shock up to 2300 psi. In the future, the transducer design should be certified through the fields test, and modified if needed.

Calibration of Acceleration Plant and Test Rig Design to Dynamic Fracture (동적 파괴에 대한 가속장치의 보정 및 시험장치 설계)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.47-52
    • /
    • 2008
  • The force transducer in the acceleration plant due to dynamic fracture is calibrated by dynamically using the stress pulses from a longitudinal bar. The bar is supported by two strings attached to the ceiling. The bar velocities before and after impact are measured and a full bridge at bar and transducer is formed by the four strain gauges. A transient recorder is used to store the stress pulse signals of force transducer and bar. For the first test series, three point bend test specimens can be chosen by means of test rig design and the inspection as sample experiment in this presented paper is sufficient for proving with the numerical simulation of the specimen model.

Optimal Structural Design of a Tonpilz Transducer by Means of the Finite Element Method (유한요소법을 이용한 Tonpilz 트랜스듀서의 최적구조 설계)

  • 강국진;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.637-644
    • /
    • 2003
  • In this study, with the FEM we analyzed the variation of the resonance frequency, bandwidth, and sound pressure of the Tonpilz transducer in relation to its design variables. Through statistical multiple regression analysis of the results, we derived functional forms of the resonance frequency, bandwidth, and sound pressure in terms of the design variables. By applying the constrained optimization technique, SQP-PD, to the derived function, we determined the optimal structure of the transducer that could provide the highest sound pressure level at the resonance frequency of 30,000 Hz and having the -3 dB bandwidth more than 10%, The validity of the optimized results was confirmed through comparison of the optimal performance with that of the FEA. The optimal design method proposed could reflect all the cross-coupled effects of multiple structural variables, and could determine the detailed geometry of the transducer with great efficiency and rapidity.

Design and Fabrication of Multi-mode Wideband Tonpilz Transducers (다중모드 광대역 Tonpilz 트랜스듀서의 설계 및 제작)

  • Kim, Jinwook;Kim, Hoeyong;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.191-198
    • /
    • 2013
  • In this paper, we designed a wideband Tonpilz transducer, and verified the validity of the design through experiments. The wide frequency bandwidth was achieved by coupling the fundamental longitudinal mode of the transducer with a flapping mode of the head mass. Structure of the Tonpilz transducer was optimized by means of the finite element method and genetic algorithm to achieve the widest fractional bandwidth under design constraints. The optimized structure showed a far wider -6 dB fractional bandwidth of transmitting responses than that of single mode transducers. For verification of the design result, we manufactured a transducer prototype of the designed structure and characterized its performance, which showed good agreement with the design results.