• Title/Summary/Keyword: transducer design

Search Result 383, Processing Time 0.023 seconds

Development of Surface Acoustic Wave Biosensor Using Epitaxial Lift-Off(ELO) Technology (ELO 기술을 이용한 표면 탄성파 바이오 센서의 개발)

  • 김기범;정우석;권대규;김남균;홍철운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.447-449
    • /
    • 2004
  • The purpose of this study is measured surface acoustic wave(SAW) characteristics to confirm utilization possibility as SAW sensor using new Pb(Mg$_{1}$3/Nb$_{2}$3/) $O_3$-PbTiO$_3$ (PMN-PT) piezoelectric substrate. We have tried to see if the material can be practically available as a new surface acoustic wave (SAW) biosensor to detect protein. The experimental results clarified that the frequency filtering of the central frequency of the PMN-PT substrate is a superior result to that of the LiTaO$_3$ (LT) substrate, but the result was not completely satisfactory. We know there is a problem in the design of inter-digital transducer (IDT) pattern. The waves transferred through the input terminal forms SAW which is sure to be transferred to the direction of the output terminal and the backward direction of the input terminal. This reflected wave is reiterated with SAW, which is transferred to the output direction, and so the frequency filtering gives a not good result. The electromechanical coupling coefficient of the PMN-PT substrate is excellent, and we can use it as a SAW sensor, in the near future, provided that there will be a new IDT design to increase the frequency filtering.

  • PDF

The Design of Variable Frequency Oscillator using SAW Device (탄성표면파 소자를 이용한 가변 주파수 발진기의 설계)

  • Moon, Geon;Jun, Kye-Suk;Jeong, Kwan-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.8 no.4
    • /
    • pp.151-155
    • /
    • 1983
  • In this paper, it is studied a novel SAW oscillator by applicating SAW delay characteristics, which can be variable its frequencies by consiting of two output IDT(Inter-Digital Transducer) without external filtering and resonating circuits. The results of experiments showed the temperature characteristics of AT-cut quartz which has been used as frequency-determing substrate of SAW oscillator was good. Though the variable frequencies range was narrow but the experiments showed the possibility to broaden its frequencies range by design of SAW device, and also confromed the stability of fundamental wave oscillating in high frequency range.

  • PDF

Vibration transfer characteristic of foaming sponge chair seat (발포스펀지 의자시트의 진동전달 특성)

  • Kim, S.H.;Kang, H.J.;Kim, T.K.;Moon, D.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.24-29
    • /
    • 2012
  • Recently, in the movie theater, the special chair is installed to maximize the viewing effect of movies. It is structured to convey a vibrational stimulus to a specially-designated parts of human body by attaching a vibration transducer to a existing theater chair. This paper describes the analysis of the vibration transfer characteristic of a foaming sponge seat for the design of the special chair. We could not apply the structural analysis S/W because it is difficult to obtain the mechanical properties and damping coefficients of the various type sponges. And then we computed the transfer functions by the global curve fitting program based on experimental modal analysis. The experimental response results comparatively coincide with those by the global curve fitting program. We also could obtain the natural frequencies, the modal damping coefficient ratio, the modal vectors and the whole transfer functions. Therefore we could analyze the dynamic characteristic for design of foaming sponge seat.

Simulation of A 90° Differential Phase Shifter for Korean VLBI Network 129 GHz Band Polarizer

  • Chung, Moon-Hee;Je, Do-Heung;Han, Seog-Tae;Kim, Soo-Yeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.239-244
    • /
    • 2010
  • A simulation for the design of a $90^{\circ}$ differential phase shifter aimed toward Korean VLBI Network (KVN) 129 GHz band polarizer is described in this paper. A dual-circular polarizer for KVN 129 GHz band consists of a $90^{\circ}$ differential phase shifter and an orthomode transducer. The differential phase shifter is made up of a square waveguide with two opposite walls loaded with corrugations. Three-dimensional electromagnetic simulation has been performed to predict the $90^{\circ}$ differential phase shifter's characteristics. The simulation for the differential phase shifter shows that the phase shift is $90^{\circ}{\pm}3.3^{\circ}$ across 108-160 GHz and the return losses of two orthogonal modes are better than -30 dB within the design frequency band. According to the simulation results the calculated performance is quite encouraging for KVN 129 GHz band application.

Image Enhancement Techniques for UT - NDE for Sizing and Detection of Cracks in Narrow Target (초음파 비파괴 평가를 위한 협소 타깃의 크랙 사이징 및 검출을 위한 영상 증진기술)

  • Lee, Young-Seock;Nam, Myoung-Woo;Hong, Sunk-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.245-249
    • /
    • 2007
  • In this paper describes image enhancement technique using deconvolution processing for ultrasonic nondestructive testing. When flaws are detected fur B-scan or C-scan, blurring effect which is caused by the moving intervals of transducer degrades the quality of images. In addition, acquisited images suffer form speckle noise which is caused by the ultrasonic components reflected from the grain boundary of material (1,2). The deconvolution technique can restore sharp peak value or clean image from blurring signal or image. This processing is applied to C-scan image obtained from known specimen. Experimental results show that the deconvolution processing contributes to get improved the quality of C-scan images.

  • PDF

Dseign of a Selectable Left and Right Handed Circular Polarizer (좌-우선회 원편파 상호 선택 변환 편파기 설계)

  • Yang, Doo-Yeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.3
    • /
    • pp.254-262
    • /
    • 1996
  • In this paper, we present a polarizer that consists of three step rotary detents which can selectively convert linear polarzation into circular polarization and vice versa. For the design of the polarizer, the transmission line theory is applied to design the wa- veguide mode transducer for the modes to be smothly converted in waveguides, and a dielectric plate is inserted in circular waveguide for the conversion of a polarized wave with the angle of an inserted dielectric plate. Also, we simulated to obtain the optimum values of the transmission and the reflection coefficient characteristics at input and output port, and proved the propriety of the theory from the knowledge of measuring the constructed polarizer with the designed data.

  • PDF

A Horn of Half-Wave Design for Ultrasonic Metal Welding (초음파 금속 용착용 반파장 혼의 설계)

  • Jang, Ho-Su;Park, Woo-Yeol;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.76-81
    • /
    • 2012
  • Ultrasonic metal welding is one of the welding methods which welds metal by applying high frequency vibrational energy into specific area at constant pressure, avaliable in room temperature and low temperature. Ultrasonic metal welder is consisted of power supply, transducer, booster, and horn. Precise designing is required since each parts' shape, length and mass can affect driving frequency and vibration mode. This paper focused to horn design, its length L was set to 62mm by calculating vibration equation. By performing modal analysis with various shape variable b times integer, when length of b is 30mm the output was 39,599Hz at 10th mode. Also by performing harmonic response analysis, the frequency response result was 39,533Hz, which was similar to modal analysis result. In order to observe the designed horn's performance, about 4,000 voltage data was obtained from a light sensor and was analyzed by FFT analysis using Origin Tool. The result RMS amplitude was approximately 8.5${\mu}m$ at 40,000Hz, and maximum amplitude was 12.3${\mu}m$. Therefore, it was verified that the ultrasonic metal welding horn was optimally designed.

Measurement of the Shape of the Cold Neutron Source Vertical Hole by Ultrasonic Wave Sensor (초음파센서를 이용한 냉중성자원 수직공 형상측정)

  • Park, Guk-Nam;Choe, Chang-Ung;Sim, Cheol-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2167-2173
    • /
    • 2000
  • The HANARO (High-flux Advanced Neutron Application Reactor) has operated since 1995. The Cold Neutron(CN) hole was implanted in the reflector tank from the design stage. Before a vacuum chamber and a moderator cell for the cold neutron source are installed into the CN hole, it is necessary to measure the exact size of the inside diameter and thickness of the CN hole to prevent the interference problem. Due to inaccessibility and high radiation field in the CN hole, a mechanical measurement method is not permitted. The immersion ultrasonic technique is considered as the best method to measure the thickness and the diameter. The 4 axis manipulator of the 2 channel of a sensor module was fabricated. The transducer of 10 MHz results in 0.03 nun of resolution. The inside diameter and thickness for 550 points of the CN hole were measured using 2 channel ultrasonic sensors. The results showed that the thickness is in the range of 13-6.7 mm and inside diameter is in the range of o 156-165. These data will be a good reference in the design of a cold neutron source facility.

Development of a Real-time 3D Intraoral Scanner Based on Fringe-Projection Technique (프린지 투영법을 이용한 실시간 3D 구강 내 스캐너의 개발)

  • Ullah, Furqan;Lee, Gunn-Soo;Park, Kang
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.3
    • /
    • pp.156-163
    • /
    • 2012
  • Real-time three-dimensional shape measurement is becoming increasingly important in various fields, including medical sciences, high-technology industry, and microscale measurements. However, there are not so many 3D profile tools specially designed for specifically narrow space, for example, to scan the tooth shape of a human jaw. In this paper, a real-time 3D intraoral scanner is proposed for the measurement of tooth profile in the mouth cavity. The proposed system comprises a laser diode beam, a micro charge-coupled device, a graticule, a piezoelectric transducer, a set of optical lenses, and a polhemus device sensor. The phase-shifting technique is used along with an accurate calibration method for the measurement of the tooth profile. Experimental and theoretical inspection of the phase-to-coordinate relation is presented. In addition, a nonlinear system model is developed for collimating illumination that gives the more accurate mathematical representation of the system, thus improves the shape measurement accuracy. Experiment results are presented to verify the feasibility and performance of the developed system. The experimental results indicate that overall measurement error accuracy can be controlled within 0.4 mm with a variability of ${\pm}0.01$.

Design of High Speed Analog Input Card for Ultrasonic Testing (초음파 탐상을 위한 고속 아날로그 입력 카드의 설계)

  • 이병수;이동원;박두석
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.4
    • /
    • pp.62-68
    • /
    • 2000
  • It was designed a high-speed analog input card that is a important device of ultrasonic testing flaw detector in the middle of non-destructive testing in this Paper. The A/D Board is inquired high-speed sampling rate and fast data acquisition system. This pater shows a design that has a function of Peak- Detection for ultrasonic testing by ISA Bus type and a 50MHz of A/D converter in order to do sampling more than quadruple frequency of transducer frequency.

  • PDF