• 제목/요약/키워드: transcriptome analysis

검색결과 342건 처리시간 0.036초

Transcriptional Response According to Strength of Calorie Restriction in Saccharomyces cerevisiae

  • Lee, Yae-Lim;Lee, Cheol-Koo
    • Molecules and Cells
    • /
    • 제26권3호
    • /
    • pp.299-307
    • /
    • 2008
  • To characterize gene expression that is dependent on the strength of calorie restriction (CR), we obtained transcriptome at different levels of glucose, which is a major energy and carbon source for budding yeast. To faithfully mimic mammalian CR in yeast culture, we reconstituted and grew seeding yeast cells in fresh 2% YPD media before inoculating into 2%, 1%, 0.5% and 0.25% YPD media to reflect different CR strengths. We collected and characterized 160 genes that responded to CR strength based on the rigorous statistical analyses of multiple test corrected ANOVA (adjusted p value < 0.1 or raw p value < 0.0031) and Pearson correlation (|r| > 0.7). Based on the individual gene studies and the GO Term Finder analysis of 160 genes, we found that CR dose-dependently and gradually increased mitochondrial function at the transcriptional level. Therefore, we suggest these 160 genes are markers that respond to CR strength and that might be useful in elucidating CR mechanisms, especially how stronger CR extends life span more.

RNA-Seq 데이터를 이용한 전사체 분석 도구 (A Transcriptome Analysis Tool using RNA-Seq Data)

  • 공진화;신재문;원정임;이은주;윤지희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(C)
    • /
    • pp.113-115
    • /
    • 2012
  • 전사체(transcriptome) 분석이란 주어진 조건 하에서 현재 세포 내에 발현된 모든 트랜스크립트의 종류와 양을 밝히는 것을 의미하며, 분석 결과는 질병 관련성/유전적 요인 규명 등의 연구에 직접 활용한다. 우리는 선행 연구에서 RNA-Seq 데이터를 이용하여 선택 스플라이싱 과정에 의하여 생성되는 모든 트랜스크립트의 유형을 분류/추출하는 새로운 방법론을 제안한 바 있다. 그 후속 연구로서 본 연구에서는 시간/공간 효율적인 알고리즘 구현을 위한 최적화 방법론을 제안하고, 실용화를 위한 전사체 분석 도구 개발에 대하여 논한다. 개발된 전사체 분석 도구에서는 기존의 분석 도구와 달리 RNA-Seq 데이터의 단계적 분석 결과를 시각적 뷰어를 통하여 검색 가능하며, 이들 기능은 복잡한 전사체 분석 결과의 이해와 타당성 검증에 활용한다.

Transcriptome analysis of internal and external stress mechanisms in Aster spathulifolius Maxim.

  • Sivagami, Jean Claude;Park, SeonJoo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 춘계학술대회
    • /
    • pp.35-35
    • /
    • 2019
  • Aster spathulifolius Maxim. is belongs to the Asteraceae family which is distributed only in Korea and Japan. It is recognize as a traditionally medicinal plants and economically valuable in ornamental field. However, among the Asteraceae family, the Aster genus, which is lacks in genomic resources and information of molecular function. Therefore, we used high throughput RNA-sequencing transcriptome data of the A. spathulifolius to know molecular level function. DeNovo assembly produced 98,660 unigene with N50 value 1126 bp. Unigenes was performed to analyses the functional annotation against NCBI database like plant database of nucleotide (Nt) and non-redundant protein (Nr), Pfam, Uniprot, KEGG and Transcriptional factor (TF). In addition, Distribution of SSR markers also analyzed for future perfectives. Further, Comparing with other two Asteraceae family species like, Karelinia caspica and Chrysanthemum morifolium to the A. spathulifolius shows the number of gene that regulated in internal and external stress respectively salt-tolerant and heat and drought stress to understand the molecular basis related to the different environments stress.

  • PDF

Functional Characterization of cAMP-Regulated Gene, CAR1, in Cryptococcus neoformans

  • Jung, Kwang-Woo;Maeng, Shin-Ae;Bahn, Yong-Sun
    • Mycobiology
    • /
    • 제38권1호
    • /
    • pp.26-32
    • /
    • 2010
  • The cyclic AMP (cAMP) pathway plays a major role in growth, sexual differentiation, and virulence factor synthesis of pathogenic fungi. In Cryptococcus neoformans, perturbation of the cAMP pathway, such as a deletion in the gene encoding adenylyl cyclase (CAC1), causes defects in the production of virulence factors, including capsule and melanin production, as well as mating. Previously, we performed a comparative transcriptome analysis of the Ras- and cAMP- pathway mutants, which revealed 163 potential cAMP-regulated genes (38 genes at a 2-fold cutoff). The present study characterized the role of one of the cAMP pathway-dependent genes (serotype A identification number CNAG_ 06576.2). The expression patterns were confirmed by Northern blot analysis and the gene was designated cAMP-regulated gene 1 (CAR1). Interestingly, deletion of CAR1 did not affect biosynthesis of any virulence factors and the mating process, unlike the cAMP-signaling deficient cac1$\Delta$ mutant. Furthermore, the car1$\Delta$ mutant exhibited wild-type levels of the stress-response phenotype against diverse environmental cues, indicating that Car1, albeit regulated by the cAMP-pathway, is not essential to confer a cAMP-dependent phenotype in C. neoformans.

Transcription Regulation Network Analysis of MCF7 Breast Cancer Cells Exposed to Estradiol

  • Wu, Jun-Zhao;Lu, Peng;Liu, Rong;Yang, Tie-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.3681-3685
    • /
    • 2012
  • Background: In breast cancer, estrogen receptors have been demonstrated to interact with transcription factors to regulate target gene expression. However, high-throughput identification of the transcription regulation relationship between transcription factors and their target genes in response to estradiol is still in its infancy. Purpose: Thus, the objective of our study was to interpret the transcription regulation network of MCF7 breast cancer cells exposed to estradiol. Methods: In this work, GSE11352 microarray data were used to identify differentially expressed genes (DEGs). Results: Our results showed that the MYB (v-myb myeloblastosis viral oncogene homolog [avian]), PGR (progesterone receptor), and MYC (v-myc myelocytomatosis viral oncogene homolog [avian]) were hub nodes in our transcriptome network, which may interact with ER and, in turn, regulate target gene expression. MYB can up-regulate MCM3 (minichromosome maintenance 3) and MCM7 expression; PGR can suppress BCL2 (B-cell lymphoma 2) expression; MYC can inhibit TGFB2 (transforming growth factor, beta 2) expression. These genes are associated with breast cancer progression via cell cycling and the $TGF{\beta}$ signaling pathway. Conclusion: Analysis of transcriptional regulation may provide a better understanding of molecular mechanisms and clues to potential therapeutic targets in the treatment of breast cancer.

전사체와 대사물질 구조분석을 통한 Novosphingobium pentaromativorans US6-1의 dibenzofuran 분해 경로 해석 (Investigation of biodegradation pathway of dibenzofuran by Novosphingobium pentaromativorans US6-1 via transcriptomic and mass-spectrometric analysis)

  • 나혜윤;권개경
    • 미생물학회지
    • /
    • 제54권1호
    • /
    • pp.46-52
    • /
    • 2018
  • 다환 방향족 탄화수소(polycyclic aromatic hydrocarbon, PAH) 우수 분해균주인 Novosphingobium pentaromativorans US6-1의 dibenzofuran (DBF) 분해경로를 밝히기 위하여 중간대사물질 분석과 전사체 분석을 진행하였다. GC/MS로 중간대사물질을 분석한 결과, 3(2H)-벤조퓨라논이 검출되었는데 이 화합물은 측면 이산소화에 의해 생성된 중간대사산물들의 기본 골격이 되는 물질로써 균주 US6-1에 의한 DBF의 분해가 측면 이산소화로 진행될 가능성을 시사한다. RNA-Seq 분석 결과, 균주 US6-1이 DBF에 노출되었을 때 발현되는 유전자들의 대부분이 lateral dioxygenation과 관련이 있다는 것을 확인하였다. 이상의 결과로부터N. pentaromativorans US6-1에 의해 일어나는 측면 이산소화를통한 DBF 분해경로와 관련 유전자들을 제시하였다.

Mercury Resistance and Removal Mechanisms of Pseudomonas sp. Isolated Mercury-contaminated Site in Taiwan

  • Luo, Kai-Hong;Chen, Ssu-Ching;Liao, Hung-Yu
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권5호
    • /
    • pp.16-24
    • /
    • 2016
  • A new strain of Pseudomonas sp. was isolated from mercury (Hg)-contaminated sites in Taiwan. This bacterium removed more than 80% of Hg present in the culture medium at 12 h incubation and was chosen for further analysis of the molecular mechanisms of Hg tolerance/removal abilities in this Pseudomonas sp. We used RNA-seq, one of the next-generation sequencing methods, to investigate the transcriptomic responses of the Pseudomonas sp. exposed to 60 mg/L of Hg2+. We de novo assembled 4,963 contigs, of which 10,533 up-regulated genes and 5,451 down-regulated genes were found to be regulated by Hg. The 40 genes most altered in expression levels were associated with tolerance to Hg stress and metabolism. Functional analysis showed that some Hg-tolerant genes were related to the mer operon, sulfate uptake and assimilation, the enzymatic antioxidant system, the HSP gene family, chaperones, and metal transporters. The transcriptome were analyzed further with Gene Ontology (GO) and Cluster of Orthologous Groups (COGs) of proteins and showed diverse biological functions and metabolic pathways under Hg stress.