• 제목/요약/키워드: transcriptional profile

검색결과 36건 처리시간 0.022초

Construction and Validation of Human cDNA Microarray for Estimation of Endocrine Disrupting Chemicals (KISTCHIP-400 ver. 1.0)

  • Ryu, Jae-Chun;Kim, Youn-Jung
    • Molecular & Cellular Toxicology
    • /
    • 제1권1호
    • /
    • pp.52-61
    • /
    • 2005
  • Transcript profiling is a particularly valuable tool in the field of steroid receptor biology, as these receptors are ligand-activated transcription factors and therefore exert their initial effects through altering gene expression in responsive cells. Also, an awareness of endocrine disrupting chemicals (EDCs) and their potential screening methods to identify endocrine activity have been increased. Here we developed an in-house cDNA microarray, named KISTCHIP-400 ver. 1.0, with 416 clones, based on public database and research papers. These clones contained estrogen, androgen, thyroid hormone & receptors, sex hormone signal transduction & regulation, c-fos, c-myc, ps2 gene, metabolism related genes etc. Also, to validate the KISTCHIP-400 ver. 1.0, we investigated gene expression profiles with reference hormones, $10^{8}\;M\;17{\beta}-estradiol,\;10^{-7}\;M\;testosterone\;and\;10^{-7}\;M$ progesterone in MCF-7 cell line. As the results, gene expression profiles of three reference hormones were distinguished from each other with significant and identified 33 $17{\beta}-estradiol$ responsive genes. This study is in first step of validation for KISTCHIP-400 ver. 1.0, as following step transcriptional profile analysis on not only low concentrations of EDCs but suspected EDCs using KISTCHIP-400 ver. 1.0 is processing. Our results indicate that the developed microarray may be a useful laboratory tool for screening EDCs and elucidating endocrine disrupting mechanism.

HaCaT Keratinocytes and Primary Epidermal Keratinocytes Have Different Transcriptional Profiles of Cornified Envelope-Associated Genes to T Helper Cell Cytokines

  • Seo, Min-Duk;Kang, Tae-Jin;Lee, Chang-Hoon;Lee, Ai-Young;Noh, Min-Soo
    • Biomolecules & Therapeutics
    • /
    • 제20권2호
    • /
    • pp.171-176
    • /
    • 2012
  • HaCaT cells are the immortalized human keratinocytes and have been extensively used to study the epidermal homeostasis and its pathophysiology. T helper cells play a role in various chronic dermatological conditions and they can affect skin barrier homeostasis. To evaluate whether HaCaT cells can be used as a model cell system to study abnormal skin barrier development in various dermatologic diseases, we analyzed the gene expression profile of epidermal differentiation markers of HaCaT cells in response to major T helper (Th) cell cytokines, such as $IFN{\gamma}$, IL-4, IL-17A and IL-22. The gene transcriptional profile of cornified envelope-associated proteins, such as filaggrin, loricrin, involucrin and keratin 10 (KRT10), in HaCaT cells was generally different from that in normal human keratinocytes (NHKs). This suggests that HaCaT cells have a limitation as a model system to study the pathophysiological mechanism associated with the Th cell cytokine-dependent changes in cornified envelope-associated proteins which are essential for normal skin barrier development. In contrast, the gene transcription profile change of human ${\beta}2$-defensin (HBD2) in response to $IFN{\gamma}$, IL-4 or IL-17A in HaCaT cells was consistent with the expression pattern of NHKs. $IFN{\gamma}$ also up-regulated transglutaminase 2 (TGM2) gene transcription in both HaCaT cells and NHKs. As an alternative cell culture system for NHKs, HaCaT cells can be used to study molecular mechanisms associated with abnormal HBD2 and TGM2 expression in response to $IFN{\gamma}$, IL-4 or IL-17A.

Transcriptional Profile and Cellular Effects on Treatment of Methylmercury Using Human Cdna Microarray

  • Kim, Youn-Jung;Yun, Hye-Jung;Jeon, Hee-Kyung;Chai, Young-Gyu;Ryu, Jae-Chun
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 추계학술대회
    • /
    • pp.129-129
    • /
    • 2003
  • Methylmercury is known to have devastating effects on the mammalian nervous system. When human neuroblastoma SH-SY5Y cells were treated with MeHg at sublethal concentrations (6.25 uM), up-regulated genes (39) & Down-regulated genes (19) were identified by microarray.(omitted)

  • PDF

Transcriptional Profile and Cellular Effects on Time Course & Doses Treatment of Methylmercury using Human cDNA Microarray System

  • Kim, Youn-Jung;Yun, Hye-Jung;Kim, Eun-Young;Ryu, Jae-Chun
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 추계국제학술대회
    • /
    • pp.176-176
    • /
    • 2003
  • Methylmercury is known to have devastating effects on the mammalian nervous system. When human neuroblastoma SH-SY5Y cells were treated with methylmercury at sublethal concentrations (6.25 uM), up-regulated genes (39) & down-regulated genes (19) were identified by human 8k cDNA microarray. These genes are related with microtubule process, signal transduction pathway and cell death (apoptosis), Apoptosis-associated genes, HSP70, CDK inhibitor 1, FOS-like antigen were up-regulated and microtubule related genes like villin and dynein down-regultaed. To confirm the presence of apoptosis in cultured SH-SY5Y cells treated 6.25 and 1 uM methylmercury, we applied Annexin V-FITC assay followed by flow cytometric measurements after 6 and 24h. Studies on transcriptional and molecular effect by methylmercury may provide an insight into the neurotoxic effects of methylmercury in human neuronal cells and a possibility to develop more efficient and exact monitoring system of heavy metals as ubiquitous environmental pollutants.

  • PDF

Alternative Isoforms of TonEBP with Variable N-termini are Expressed in Mammalian Cells

  • Kim, Hyo-Shin;Son, Sook-Jin;Kim, Seon-Nyo;Kim, Yong-Duk;Kim, Kwang-Jin;Jeon, Byeong-Hwa;Park, Jin-Bong;Lee, Sang-Do
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권3호
    • /
    • pp.135-138
    • /
    • 2007
  • Hypertonicity imposes a great deal of stress to cells since it causes rise in cellular ionic strength, which can be reduced by the accumulation of compatible osmolytes. TonEBP plays a central role in the cellular accumulation of compatible osmolytes via transcriptional stimulation of membrane transporters and aldose reductase. Alternatively spliced forms of TonEBP mRNA have previously been reported and two of them showed different transcriptional activity. In the present study, isoform-specific antibodies were produced to confirm the translation of the spliced mRNA to protein. TonEBP was immunoprecipitated by using anti-TonEBP antibody and then immunoblotted using anti-TonEBP or isoform specific antibodies to find out the expression profile of TonEBP isoforms in basal or stimulated condition. From these results, we conclude that all TonEBP isoforms are expressed in mammalian cells and their expression patterns are not same in every cells.

Vorinostat-induced acetylation of RUNX3 reshapes transcriptional profile through long-range enhancer-promoter interactions in natural killer cells

  • Eun-Chong Lee;Kyungwoo Kim;Woong-Jae Jung;Hyoung-Pyo Kim
    • BMB Reports
    • /
    • 제56권7호
    • /
    • pp.398-403
    • /
    • 2023
  • Natural killer (NK) cells are an essential part of the innate immune system that helps control infections and tumors. Recent studies have shown that Vorinostat, a histone deacetylase (HDAC) inhibitor, can cause significant changes in gene expression and signaling pathways in NK cells. Since gene expression in eukaryotic cells is closely linked to the complex three-dimensional (3D) chromatin architecture, an integrative analysis of the transcriptome, histone profiling, chromatin accessibility, and 3D genome organization is needed to gain a more comprehensive understanding of how Vorinostat impacts transcription regulation of NK cells from a chromatin-based perspective. The results demonstrate that Vorinostat treatment reprograms the enhancer landscapes of the human NK-92 NK cell line while overall 3D genome organization remains largely stable. Moreover, we identified that the Vorinostat-induced RUNX3 acetylation is linked to the increased enhancer activity, leading to elevated expression of immune response-related genes via long-range enhancer-promoter chromatin interactions. In summary, these findings have important implications in the development of new therapies for cancer and immune-related diseases by shedding light on the mechanisms underlying Vorinostat's impact on transcriptional regulation in NK cells within the context of 3D enhancer network.

Forskolin-Induced Stimulation of RGS2 mRNA in C6 Astrocytoma Cells

  • Kim Sung-Dae;Cho Jae-Youl;Park Hwa-Jin;Kim Sang-Keun;Rhee Man-Hee
    • 대한의생명과학회지
    • /
    • 제12권3호
    • /
    • pp.131-137
    • /
    • 2006
  • RGS is a negative regulator of G-protein signaling and can be identified by the presence of a conserved $120{sim}125$ amino acid motif, which is referred to as the RGS box. A number of RGSs are induced in response to a wide variety of stimuli. Increased levels of RGSs lead to significant decreases in GPCR responsiveness. To obtain further evidence of a role of RGS proteins in rat C6 astrocytoma cells, we first determined the expression profile of RGS-specific mRNA in C6 cells using reverse transcription-polymerase chain reaction (RT-PCR) with a poly dT18 primer and transcript-specific primers. We found that RGS2, RGS3, RGS6, RGS9, RGS10, RGS12, and RGS16 were differentially expressed in C6 astrocytoma cells. The highest expression rate was found for RGS3, followed by RGS16, RGS10 and RGS9, whereas the expression level for RGS2 was barely detectable. We next assessed whether forskolin regulated the expression of RGSs expressed in C6 astrocytoma cells. The present study found that forskolin dose-dependently stimulated the expression of RGS2 transcripts. This up-regulation of RGS2 gene was abrogated by H-89, potent and broad-spectrum protein kinase A (PKA) inhibitors. Actinomycin D completely inhibited the up-regulation of RGS2 gene induced by forskolin $(10{\mu}M)$, indicating that the regulation of RGS2 gene is controlled at the transcriptional level. In addition, forskolin did significantly activate transcriptional cAMP response element (CRE) in either HEK 293 cells or C6 cells and did not modulate the $NF-{\kappa}B$ and AP-l activity as measured by luciferase reporter gene assay. Finally, forskolin induced the expression of RGS2 mRNA in C6 astrocytoma cells, which depend on the PKA pathway and CRE transcriptional pathways.

  • PDF

Identification of the Regulators Binding to the Upstream Region of glxR in Corynebacterium glutamicum

  • Subhadra, Bindu;Ray, Durga;Han, Jong Yun;Bae, Kwang-Hee;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권8호
    • /
    • pp.1216-1226
    • /
    • 2015
  • GlxR is considered as a global transcriptional regulator controlling a large number of genes having broad physiological aspects in Corynebacterium glutamicum. However, the expression profile revealing the transcriptional control of glxR has not yet been studied in detail. DNA affinity chromatography experiments revealed the binding of transcriptional regulators SucR, RamB, GlxR, and a GntR-type protein (hereafter denoted as GntR3) to the upstream region of glxR. The binding of different regulators to the glxR promoter was confirmed by EMSA experiments. The expression of glxR was analyzed in detail under various carbon sources in the wild-type and different mutant strains. The sucR and gntR3 deletion mutants showed decreased glxR promoter activities, when compared with the wild type, irrespective of the carbon sources. The promoter activity of glxR was derepressed in the ramB deletion mutant under all the tested carbon sources. These results indicate that SucR and GntR3 are acting as activators of GlxR, while RamB plays a repressor. As expected, the expression of glxR in the cyaB and glxR deletion mutants was derepressed under different media conditions, indicating that GlxR is autoregulated.

Stimulation of Platelet-Activating Factor (PAF) Synthesis in Human Intestinal Epithelial Cell Line by Aerolysin from Aeromonas encheleia

  • Nam In-Young;Cho Jae-Chang;Myung Hee-Joon;Joh Ki-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권8호
    • /
    • pp.1292-1300
    • /
    • 2006
  • Aeromonas encheleia, a potential human intestinal pathogen, was shown to infect a human intestinal epithelial cell line (Caco-2) in a noninvasive manner. The transcriptional profile of the Caco-2 cells after infection with the bacteria revealed an upregulated expression of genes involved in chloride secretion, including that of phospholipase A2 (PLA2) and platelet-activating factor (PAF) acetylhydrolase (PAFAH2). This was also confirmed by a real-time RT-PCR analysis. As expected from PLA2 induction, PAF was produced when the Caco-2 cells were infected with the bacteria, and PAF was also produced when the cells were treated with a bacterial culture supernatant including bacterial extracellular proteins, yet lacking lipopolysaccharides. Bacterial aerolysin was shown to induce the production of PAF.