• 제목/요약/키워드: transcriptional analysis

검색결과 547건 처리시간 0.028초

Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway

  • Jung, Tae-Hwan;Park, Jeong Hyeon;Jeon, Woo-Min;Han, Kyoung-Sik
    • Nutrition Research and Practice
    • /
    • 제9권4호
    • /
    • pp.343-349
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Fermentation of dietary fiber results in production of various short chain fatty acids in the colon. In particular, butyrate is reported to regulate the physical and functional integrity of the normal colonic mucosa by altering mucin gene expression or the number of goblet cells. The objective of this study was to investigate whether butyrate modulates mucin secretion in LS174T human colorectal cells, thereby influencing the adhesion of probiotics such as Lactobacillus and Bifidobacterium strains and subsequently inhibiting pathogenic bacteria such as E. coli. In addition, possible signaling pathways involved in mucin gene regulation induced by butyrate treatment were also investigated. MATERIALS/METHODS: Mucin protein content assay and periodic acid-Schiff (PAS) staining were performed in LS174T cells treated with butyrate at various concentrations. Effects of butyrate on the ability of probiotics to adhere to LS174T cells and their competition with E. coli strains were examined. Real time polymerase chain reaction for mucin gene expression and Taqman array 96-well fast plate-based pathway analysis were performed on butyrate-treated LS174T cells. RESULTS: Treatment with butyrate resulted in a dose-dependent increase in mucin protein contents in LS174T cells with peak effects at 6 or 9 mM, which was further confirmed by PAS staining. Increase in mucin protein contents resulted in elevated adherence of probiotics, which subsequently reduced the adherent ability of E. coli. Treatment with butyrate also increased transcriptional levels of MUC3, MUC4, and MUC12, which was accompanied by higher gene expressions of signaling kinases and transcription factors involved in mitogen-activated protein kinase (MAPK) signaling pathways. CONCLUSIONS: Based on our results, butyrate is an effective regulator of modulation of mucin protein production at the transcriptional and translational levels, resulting in changes in the adherence of gut microflora. Butyrate potentially stimulates the MAPK signaling pathway in intestinal cells, which is positively correlated with gut defense.

Whole-Blood Gene-Expression Profiles of Cows Infected with Mycobacterium avium subsp. paratuberculosis Reveal Changes in Immune Response and Lipid Metabolism

  • Shin, Min-Kyoung;Park, Hong-Tae;Shin, Seung Won;Jung, Myunghwan;Im, Young Bin;Park, Hyun-Eui;Cho, Yong-Il;Yoo, Han Sang
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.255-267
    • /
    • 2015
  • Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease, a chronic debilitating disease affecting ruminants worldwide. In the present study, we aimed to determine the major gene networks and pathways underlying the immune response to MAP infection using whole-blood cells, as well as provide the potential transcriptional markers for identifying the status of MAP infection. We analyzed the transcriptional profiles of whole-blood cells of cattle identified and grouped according to the presence of MAP-specific antibodies and the MAP shed by them. The grouping was based on the results obtained by ELISA and PCR analyses as follows: i) Test1 group: MAP-negative results obtained by ELISA and positive results obtained by PCR; ii) Test2 group: MAP-positive results obtained by ELISA and negative results obtained by PCR; iii) Test3 group: MAP-positive results obtained by ELISA and positive results obtained by PCR; iv) uninfected control: MAP-negative results obtained both by ELISA and PCR analysis. The results showed down-regulated production and metabolism of reactive oxygen species in the Test1 group, activation of pathways related to the host-defense response against MAP (LXR/RXR activation and complement system) in the Test2 and Test3 groups, and anti-inflammatory response (activation of IL-10 signaling pathway) only in the Test3 group. Our data indicate a balanced response that serves the immune-limiting mechanism while the host-defense responses are progressing.

The Effect of Morphine on REST Expression in Human Neuroblastoma NMB Cells

  • Kim, Do-Kyung;Kim, Chun-Sung;Kim, Heung-Joong;Kook, Joong-Ki;Kim, Seung-Hee;Lee, Baek-Hee;Lee, Yun-Ho;Mo, Shin-Yeob;Loh, Horace H.
    • International Journal of Oral Biology
    • /
    • 제35권2호
    • /
    • pp.69-74
    • /
    • 2010
  • The mu opioid receptor (MOR) has been regarded as the main site of interaction with analgesics in major clinical use, particularly morphine. The repressor element-1 silencing transcription factor (REST) functions as a transcriptional repressor of neuronal genes in non-neuronal cells. However, it is expressed in certain mature neurons, suggesting that it may have complex and novel roles. In addition, the interactions between MOR and REST and their functions remain unclear. In this study, we examined the effects of morphine on the expression of REST mRNA and protein in human neuroblastoma NMB cells to investigate the roles of REST induced by MOR activation in neuronal cells. To determine the effects of morphine on REST expression, we performed RT-PCR, real-time quantitative RT-PCR, western blot analysis and radioligand binding assays in NMB cells. By RTPCR and real-time quantitative RT-PCR, the expression of REST was found to be unchanged by either the MOR agonist morphine or the MOR specific antagonist CTOP. By western blot, morphine was shown to significantly inhibit the expression of REST, but this suppression was completely blocked by treatment with CTOP. In the radioligand binding assay, the overexpression of REST led to an increased opioid ligand binding activity of endogenous MOR in the NMB cells. These results together suggest that morphine inhibits the expression of REST in human neuroblastoma cells through a post-transcriptional regulatory mechanism mediated through MOR.

FADD Phosphorylation Modulates Blood Glucose Levels by Decreasing the Expression of InsulinDegrading Enzyme

  • Lin, Yan;Liu, Jia;Chen, Jia;Yao, Chun;Yang, Yunwen;Wang, Jie;Zhuang, Hongqin;Hua, Zi-Chun
    • Molecules and Cells
    • /
    • 제43권4호
    • /
    • pp.373-383
    • /
    • 2020
  • Our previous study revealed a novel role of Fas-associated death domain-containing protein (FADD) in islet development and insulin secretion. Insulin-degrading enzyme (IDE) is a zinc metalloprotease that selectively degrades biologically important substrates associated with type 2 diabetes (T2DM). The current study was designed to investigate the effect of FADD phosphorylation on IDE. We found that the mRNA and protein levels of IDE were significantly downregulated in FADD-D mouse livers compared with control mice. Quantitative real-time polymerase chain reaction analysis showed that FADD regulates the expression of IDE at the transcriptional level without affecting the stability of the mRNA in HepG2 cells. Following treatment with cycloheximide, the IDE protein degradation rate was found to be increased in both FADD-D primary hepatocytes and FADD-knockdown HepG2 cells. Additionally, IDE expression levels were reduced in insulin-stimulated primary hepatocytes from FADD-D mice compared to those from control mice. Moreover, FADD phosphorylation promotes nuclear translocation of FoxO1, thus inhibiting the transcriptional activity of the IDE promoter. Together, these findings imply a novel role of FADD in the reduction of protein stability and expression levels of IDE.

No Relevance of NF-${\kappa}B$ in the Transcriptional Regulation of Human Nanog Gene in Embryonic Carcinoma Cells

  • Seok, Hyun-Jeong;Kim, Young-Eun;Park, Jeong-A;Lee, Young-Hee
    • 한국발생생물학회지:발생과생식
    • /
    • 제15권1호
    • /
    • pp.25-30
    • /
    • 2011
  • Embryonic stem (ES) cells can self-renew maintaining the undifferentiated state. Self renewal requires many factors such as Oct4, Sox2, FoxD3, and Nanog. NF-${\kappa}B$ is a transcription factor involved in many biological activities. Expression and activity of NF-${\kappa}B$ increase upon differentiation of ES cells. Reportedly, Nanog protein directly binds to NF-${\kappa}B$ protein and inhibits its activity in ES cells. Here, we found a potential binding site of NF-${\kappa}B$ in the human Nanog promoter and postulated that NF-${\kappa}B$ protein may regulate expression of the Nanog gene. We used human embryonic carcinoma (EC) cells as a model system of ES cells and confirmed decrease of Nanog and increase of NF-${\kappa}B$ upon differentiation induced by retinoic acid. Although deletion analysis on the DNA fragment including NF-${\kappa}B$ binding site suggested involvement of NF-${\kappa}B$ in the negative regulation of the promoter, site-directed mutation of NF-${\kappa}B$ binding site had no effect on the Nanog promoter activity. Furthermore, no direct association of NF-${\kappa}B$ with the Nanog promoter was detected during differentiation. Therefore, we conclude that NF-${\kappa}B$ protein may not be involved in transcriptional regulation of Nanog gene expression in EC cells and possibly in ES cells.

(E)-3-(3-methoxyphenyl)-1-(2-pyrrolyl)-2-propenone displays suppression of inflammatory responses via inhibition of Src, Syk, and NF-κB

  • Kim, Yong;Jeong, Eun Jeong;Han Lee, In-Sook;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권1호
    • /
    • pp.91-99
    • /
    • 2016
  • (E)-3-(3-methoxyphenyl)-1-(2-pyrrolyl)-2-propenone (MPP) is an aldol condensation product resulting from pyrrole-2-carbaldehyde and m- and p- substituted acetophenones. However, its biological activity has not yet been evaluated. Since it has been reported that some propenone-type compounds display anti-inflammatory activity, we investigated whether MPP could negatively modulate inflammatory responses. To do this, we employed lipopolysaccharide (LPS)-stimulated macrophage-like RAW264.7 cells and examined the inhibitory levels of nitric oxide (NO) production and transcriptional activation, as well as the target proteins involved in the inflammatory signaling cascade. Interestingly, MPP was found to reduce the production of NO in LPS-treated RAW264.7 cells, without causing cytotoxicity. Moreover, this compound suppressed the mRNA levels of inflammatory genes, such as inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-${\alpha}$. Using luciferase reporter gene assays performed in HEK293 cells and immunoblotting analysis with nuclear protein fractions, we determined that MPP reduced the transcriptional activation of nuclear factor (NF)-${\kappa}B$. Furthermore, the activation of a series of upstream signals for NF-${\kappa}B$ activation, composed of Src, Syk, Akt, and $I{\kappa}B{\alpha}$, were also blocked by this compound. It was confirmed that MPP was able to suppress autophosphorylation of overexpressed Src and Syk in HEK293 cells. Therefore, these results suggest that MPP can function as an anti-inflammatory drug with NF-${\kappa}B$ inhibitory properties via the suppression of Src and Syk.

Arabidopsis ACC Oxidase 1 Coordinated by Multiple Signals Mediates Ethylene Biosynthesis and Is Involved in Root Development

  • Park, Chan Ho;Roh, Jeehee;Youn, Ji-Hyun;Son, Seung-Hyun;Park, Ji Hye;Kim, Soon Young;Kim, Tae-Wuk;Kim, Seong-Ki
    • Molecules and Cells
    • /
    • 제41권10호
    • /
    • pp.923-932
    • /
    • 2018
  • Ethylene regulates numerous aspects of plant growth and development. Multiple external and internal factors coordinate ethylene production in plant tissues. Transcriptional and post-translational regulations of ACC synthases (ACSs), which are key enzymes mediating a rate-limiting step in ethylene biosynthesis have been well characterized. However, the regulation and physiological roles of ACC oxidases (ACOs) that catalyze the final step of ethylene biosynthesis are largely unknown in Arabidopsis. Here, we show that Arabidopsis ACO1 exhibits a tissue-specific expression pattern that is regulated by multiple signals, and plays roles in the lateral root development in Arabidopsis. Histochemical analysis of the ACO1 promoter indicated that ACO1 expression was largely modulated by light and plant hormones in a tissue-specific manner. We demonstrated that point mutations in two E-box motifs on the ACO1 promoter reduce the light-regulated expression patterns of ACO1. The aco1-1 mutant showed reduced ethylene production in root tips compared to wild-type. In addition, aco1-1 displayed altered lateral root formation. Our results suggest that Arabidopsis ACO1 integrates various signals into the ethylene biosynthesis that is required for ACO1's intrinsic roles in root physiology.

붉은 털 원숭이의 뇌조직에서 CCDC94 유전자 대체 전사체의 분자적 분석 (Molecular Analysis of Alternative Transcripts of CCDC94 Gene in the Brain Tissues of Rhesus Monkey)

  • 윤세은;안궁;김희수
    • 생명과학회지
    • /
    • 제21권3호
    • /
    • pp.459-463
    • /
    • 2011
  • 붉은 털 원숭이의 유전체는 인간의 것과 93% 정도로 동일하여, 진화적 연구 및 생물의학적 연구에 널리 활용되고 있다. 숙주 개체 내로 가동성 유전인자(TEs)의 삽입은 유전자 전사체의 다양성과 발현양상을 다르게 만든다. 본 연구에서는 붉은 털 원숭이의 뇌 조직으로부터 만든 cDNA 라이브러리에서 112개 전사체를 동정하여 분석하였다. 하나의 전사체 R54는 인간과 원숭이의 다양한 조직에서 유전자 발현양상을 비교분석 해 본 결과 서로 다른 패턴을 보여 주었다. 이러한 현상은 가동성 유전인자인 L2A의 삽입으로 인한 스플라이싱 도너 사이트가 변화된 것으로 생각된다. 따라서, 영장류의 진화과정에 있어 유전체 내로 TEs의 삽입은 전사체의 다양성과 유전자 발현 조절에 변화를 주는 것으로 시사된다.

Involvement of Putative Heat Shock Element in Transcriptional Regulation of $p21^{WAF1/ClP1/SDl1}$ by Heat Shock

  • Woo, Sang-Hyeok;Oh, Su-Young;Han, Song-Iy;Choi, Yung-Hyun;Kang, Kwang-Il;Yoo, Mi-Ae;Kim, Han-Do;Kang, Ho-Sung
    • Animal cells and systems
    • /
    • 제4권2호
    • /
    • pp.181-186
    • /
    • 2000
  • The expression of $p21^{WAF1/ClP1/SDl1}$, one of the cyclin-dependent kinase inhibitors, is regulated by a variety of transcription factors including p53 and STAT. Heat shock induces the expression of p21 in a temperature- and time-dependent manner. Although the p21 induction by heat shock has been reported to be controlled by p53, a p53-independent mechanism Is also involved. To understand the p53-independent regulation of heat shock-induced p21 expression, we searched the promoter region of p21 gene and found one or two heat shock element (HSE)-like sequences in human, rat, and mouse. Electromobility shift assay (EMSA) showed that heat shock factor (HSF) could bind to these HSE-like sequences In response to heat shock, even though to a lesser extent than to HSE. In addition, p21 promoter deletion analysis revealed that heat shock activated a p21 deletion promoter construct containing the HSE-like sequences but lacking p53-binding sites, but not a promoter construct containing neither HSE-like sequences nor the p53-responsive element. Furthermore, the p21 induction by heat shook was significantly inhibited in confluent cells in which heat shock-induced HSF activation was reduced. These results suggest that the transcriptional regulation of p21 by heat shock may be mediated through activation and binding to HSE-like sequences of HSF.

  • PDF

Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain

  • Itoh, Ken;Wakabayashi, Nobunao;Katoh, Yasutake;Ishii, Tetsuro;Igarashi, Kazuhiko;Engel, James Douglas;Yamamoto, Masayuki
    • 한국환경성돌연변이발암원학회:학술대회논문집
    • /
    • 한국환경성돌연변이발암원학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.25-35
    • /
    • 2002
  • Transcription factor Nrf2 is essential for the antioxidant responsive element (ARE)-mediated induction of phase II detoxifying and oxidative stress enzyme genes. Detailed analysis of differential Nrf2 activity displayed in transfected cell lines ultimately led to the identification of a new protein, which we named Keap1, that suppresses Nrf2 transcriptional activity by specific binding to its evolutionarily conserved amino-terminal regulatory domain. The closest homolog of Keap1 is a Drosophila actin-binding protein called Kelch, implying that Keap1 might be a Nrf2 cytoplasmic effector. We then showed that electrophilic agents antagonize Keap1 inhibition of Nrf2 activity in vivo, allowing Nrf2 to traverse from the cytoplasm to the nucleus and potentiate the ARE response. We postulate that Keap1 and Nrf2 constitute a crucial cellular sensor for oxidative stress, and together mediate a key step in the signaling pathway that leads to transcriptional activation by this novel Nrf2 nuclear shuttling mechanism. The activation of Nrf2 leads in turn to the induction of phase II enzyme and antioxidative stress genes in response to electrophiles and reactive oxygen species.

  • PDF