• Title/Summary/Keyword: transcription analysis

Search Result 1,494, Processing Time 0.031 seconds

Cloning and Characterization of Genes Controlling Flower Color in Pharbitis nil Using AFLP (Amplified Fragment Length Polymorphism) and DDRT (Differential Display Reverse Transcription)

  • Kim, Eun-Mi;Jueson Maeng;Lim, Yong-Pyo;Yoonkang Hur
    • Journal of Photoscience
    • /
    • v.7 no.2
    • /
    • pp.73-78
    • /
    • 2000
  • To analyze molecular traits determining pigmentation between Pharbitis nill violet and white, Amplified Fragment Length Polymorphism(AFLP) and Differential Display Reverse Transcription(DDRT) experiments were carried out with either genomic DNAs or total RNAs isolated from both plants. Results of AFLP experiment in combination of 8 EcoRⅠ primers with 6 MseⅠ primers showed 41 violet-and 60 white-specific DNA bands. In the subsequent experiment, 22 violet-and 22 white-specific DNA fragments were amplified by PCR with DNAs eluted. The sizes of the fragments range from 200 to 600bp. DDRT using total RNA produced 19 violet-and 17 white-specific cDNA fragments, ranging from 200 to 600bp. The fragments obtained by both AFLP and DDRT had been cloned into pGEM T-easy vector, amplified and subjected to the nucleotide sequence analyses. As a result of Blast sequence analysis, most of them sequenced up to date showed no similarity to any Known gene, while few has similarity to known animal or plant genes. An AFLP clone V6, for example, has a strong sequence similarity to the human transcription factor LZIP-alpha mRNA and a DDRT clone W19 to Solanum tuberosum 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA.

  • PDF

Isolation of Novel Hepcidin Isoforms from the Rockbream Oplegnathus fasciatus (Perciformes)

  • Lee, Sang-Yoon;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.1
    • /
    • pp.31-42
    • /
    • 2011
  • Three novel hepcidin isoforms were isolated and characterized from the perciform fish species Oplegnathus fasciatus. These hepcidin isoforms (designated rbhepc5, rbhepc6 and rbhepc7) were found to share a conserved, tripartite gene structure and a considerable sequence homology one another. A comparison of their mature peptide sequences with those of other perciform hepcidin orthologs indicated that these three hepcidin isoforms as well as four other isoforms previously identified in this species, appear to belong to the HAMP2 group of hepcidin genes. Analysis of the 5'-upstream sequences showed that the proximal non-coding regions of rbhepc5~7 do not possess canonical TATA signals; instead, they harbor several binding motifs for transcription factors involved in immune modulation. Reverse transcriptase-PCR analysis demonstrated that the rbhepc5~7 are expressed predominantly in the liver, and that the transcription of rbhepc5~7 is rapidly induced in the liver, but not in other tissues, by experimental challenge with any of three different bacterial species. However, transcription of rbhepc6 appeared to be negligible under both basal and stimulated conditions, as judged by the redundancy count of randomly chosen reverse transcriptase-PCR clones.

No excessive mutations in transcription activator-like effector nuclease-mediated α-1,3-galactosyltransferase knockout Yucatan miniature pigs

  • Choi, Kimyung;Shim, Joohyun;Ko, Nayoung;Park, Joonghoon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.360-372
    • /
    • 2020
  • Objective: Specific genomic sites can be recognized and permanently modified by genome editing. The discovery of endonucleases has advanced genome editing in pigs, attenuating xenograft rejection and cross-species disease transmission. However, off-target mutagenesis caused by these nucleases is a major barrier to putative clinical applications. Furthermore, off-target mutagenesis by genome editing has not yet been addressed in pigs. Methods: Here, we generated genetically inheritable α-1,3-galactosyltransferase (GGTA1) knockout Yucatan miniature pigs by combining transcription activator-like effector nuclease (TALEN) and nuclear transfer. For precise estimation of genomic mutations induced by TALEN in GGTA1 knockout pigs, we obtained the whole-genome sequence of the donor cells for use as an internal control genome. Results: In-depth whole-genome sequencing analysis demonstrated that TALEN-mediated GGTA1 knockout pigs had a comparable mutation rate to homologous recombination-treated pigs and wild-type strain controls. RNA sequencing analysis associated with genomic mutations revealed that TALEN-induced off-target mutations had no discernable effect on RNA transcript abundance. Conclusion: Therefore, TALEN appears to be a precise and safe tool for generating genomeedited pigs, and the TALEN-mediated GGTA1 knockout Yucatan miniature pigs produced in this study can serve as a safe and effective organ and tissue resource for clinical applications.

Proteomic Reference Map and Comparative Analysis between Streptomyces griseus S4-7 and wbiE2 Transcription Factor-Mutant Strain

  • Kim, Jisu;Kwon, Young Sang;Bae, Dong-Won;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.36 no.2
    • /
    • pp.185-191
    • /
    • 2020
  • Streptomyces griseus S4-7, a well-characterized keystone taxon among strawberry microbial communities, shows exceptional disease-preventing ability. The whole-genome sequence, functional genes, and bioactive secondary metabolites of the strain have been described in previous studies. However, proteomics studies of not only the S4-7 strain, but also the Streptomyces genus as a whole, remain limited to date. Therefore, in the present study, we created a proteomics reference map for S. griseus S4-7. Additionally, analysis of differentially expressed proteins was performed against a wblE2 mutant, which was deficient in spore chain development and did not express an antifungal activity-regulatory transcription factor. We believe that our data provide a foundation for further in-depth studies of functional keystone taxa of the phytobiome and elucidation of the mechanisms underlying plant-microbe interactions, especially those involving the Streptomyces genus.

A transcription factor "OsNAC075" is essential for salt resistance in rice (Oryza sativa L.)

  • Jung, Yu-Jin;Lee, Myung-Chul;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.94-104
    • /
    • 2011
  • Salt stress is a major environmental factor influencing plant growth and development. To identify salt tolerance determinants, we systematically screened salt sensitive rice mutants by use of the Activator/Dissociation (Ac/Ds) transposon tagging system. In this study, we focused on the salt sensitive mutant line, designated SSM-1. A gene encoding a NAC transcription factor homologue was disrupted by the insertion of a Ds transposon into SSM-1 line. The OsNAC075 gene (EU541472) has 7 exons and encodes a protein (486-aa) containing the NAC domain in its N-terminal region. Sequence comparison showed that the OsNAC075 protein had a strikingly conserved region at the N-terminus, which is considered as the characteristic of the NAC protein family. OsNAC075 protein was orthologous to Arabidopsis thaliana ANAC075. Phylogenetic analysis confirmed OsNAC075 belonged to the OsNAC3 subfamily, which plays an important role in response to stress stimuli. RT-PCR analysis showed that the expression of OsNAC075 gene was rapidly and strongly induced by stresses such as NaCl, ABA and low temperature ($4^{\circ}C$). Our data suggest that OsNAC075 holds promising utility in improving salt tolerance in rice.

Identification of the 187 bp EphA7 Genomic DNA as the Dorsal Midline-Specific Enhancer of the Diencephalon and Mesencephalon

  • Kim, Yujin;Park, Eunjeong;Park, Soochul
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.1007-1012
    • /
    • 2015
  • EphA7 is a key molecule in regulating the development of the dien- and mesencephalon. To get insight into the mechanism of how EphA7 gene expression is regulated during the dorsal specification of the dien- and mesencephalon, we investigated the cis-acting regulatory sequence driving EphA7 to the dorsal midline of the dien- and mesencephalon. Transgenic LacZ reporter analysis, using overlapping EphA7 BACs, was used to narrow down the dorsal midline-specific enhancer, revealing the 25.3 kb genomic region as the enhancer candidate. Strikingly, this genomic DNA was located far downstream of the EphA7 transcription start site, +302.6 kb to +327.9 kb. Further enhancer mapping, using comparative genomic analysis and transgenic methods, showed that the 187 bp genomic DNA alone, approximately 305 kb downstream of the EphA7 transcription start site, was sufficient to act as the dorsal midline-specific enhancer of EphA7. Importantly, our results indicate that the 187 bp dorsal midline-specific enhancer is critically regulated by homeobox transcription factors during the development of the dien- and mesencephalon.

Pathway Analysis in HEK 293T Cells Overexpressing HIV-1 Tat and Nucleocapsid

  • Lee, Min-Joo;Park, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1103-1108
    • /
    • 2009
  • The human immunodeficiency virus (HIV)-l protein Tat acts as a transcription transactivator that stimulates expression of the infected viral genome. It is released from infected cells and can similarly affect neighboring cells. The nucleocapsid is an important protein that has a related significant role in early mRNA expression, and which contributes to the rapid viral replication that occurs during HIV-1 infection. To investigate the interaction between the Tat and nucleocapsid proteins, we utilized cDNA micro arrays using pTat and flag NC cotransfection in HEK 293T cells and reverse transcription-polymerase chain reaction to validate the micro array data. Four upregulated genes and nine downregulated genes were selected as candidate genes. Gene ontology analysis was conducted to define the biological process of the input genes. A proteomic approach using PathwayStudio determined the relationship between Tat and nucleocapsid; two automatically built pathways represented the interactions between the upregulated and downregulated genes. The results indicate that the up- and downregulated genes regulate HIV-1 replication and proliferation, and viral entry.

A semi-automatic cell type annotation method for single-cell RNA sequencing dataset

  • Kim, Wan;Yoon, Sung Min;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • v.18 no.3
    • /
    • pp.26.1-26.6
    • /
    • 2020
  • Single-cell RNA sequencing (scRNA-seq) has been widely applied to provide insights into the cell-by-cell expression difference in a given bulk sample. Accordingly, numerous analysis methods have been developed. As it involves simultaneous analyses of many cell and genes, efficiency of the methods is crucial. The conventional cell type annotation method is laborious and subjective. Here we propose a semi-automatic method that calculates a normalized score for each cell type based on user-supplied cell type-specific marker gene list. The method was applied to a publicly available scRNA-seq data of mouse cardiac non-myocyte cell pool. Annotating the 35 t-stochastic neighbor embedding clusters into 12 cell types was straightforward, and its accuracy was evaluated by constructing co-expression network for each cell type. Gene Ontology analysis was congruent with the annotated cell type and the corollary regulatory network analysis showed upstream transcription factors that have well supported literature evidences. The source code is available as an R script upon request.

Suppressive Effects of Hesperidin on Th2-associated Cytokines Expression in RBL-2H3 Cells (RBL-2H3 세포에서 Hesperidin의 Th2 사이토카인 발현 억제 효과)

  • Jeong, Hwa-Hyun;Kim, Soon-Rye;Pyo, Myoung-Yun
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.2
    • /
    • pp.104-109
    • /
    • 2013
  • Hesperidin (HES), a flavonone glycoside isolated from the citrus fruits such as lemons and oranges, has been reported to have many biological properties including antiinflammatory, antioxidant, and antiallergy activities. In this study, we focused on the action of HES modulating Th2-associated cytokines such as IL-4 and IL-13 expression in PMA/ionomycin (PI)-stimulated rat basophilic leukemia (RBL-2H3) cells. The production of IL-4 and IL-13 was quantified by ELISA and the mRNA expression was detected by using RT-PCR assay. In addition, western blot analysis was performed to determine the transcription factors involved in the cytokine expression. We found that HES significantly decreased PI-induced IL-4 and IL-13 productions and also decreased the level of mRNA in a dose-dependent manner. Furthermore, western blot analysis of the transcription factors implied that HES down-regulated the protein level of c-Jun and c-Fos, which are the activating protein 1 (AP-1) family and nuclear factor-kappaB (NF-${\kappa}B$) characterized as a transcription factors related to the Th2-associated cytokine expression. Taken together, our data showed that the action of HES responsible for antiallergy activities is based on suppression of Th2-associated cytokines through inhibition of AP-1 and NF-${\kappa}B$ transcription factors.