• Title/Summary/Keyword: transcription activation

Search Result 740, Processing Time 0.033 seconds

Activation of CREB by PKA Promotes the Chondrogeneic Differentiation of Chick Limb Bud Mesenchymal Cells

  • Kim, Kook-Hee;Lee, Young-Sup
    • Animal cells and systems
    • /
    • v.13 no.3
    • /
    • pp.289-295
    • /
    • 2009
  • Cyclic AMP-mediated signaling pathways regulate a number of cellular functions. In this study, we examined the regulatory role of cAMP signaling pathways in chondrogenesis of chick limb bud mesenchymal cells in vitro. Forskolin, which increases cellular cAMP levels by the activation of adenylate cyclase, enhanced chondrogenic differentiation. Inhibition of PKA with specific inhibitors (H89 or KT5720) blocked pre-cartilage condensation stage, indicating that chondrogenesis is regulated by the increase in cellular cAMP level and subsequent activation of PKA. Downstream signaling pathway of PKA leading to gene expression was investigated by examination of several nuclear transcription factors. Forskolin treatment increased transcription level for a cartilage-specific marker gene Sox9. However, inhibition of PKA with H89 led to restore expression of Sox9, indicating PKA activity was required to regulate the expression of Sox9 in chondrogenesis. In addition, CREB was highly phosphorylated at early stage of mesenchyme culture, and followed by progressive dephosphorylation. CBP and ATF, another CRE related proteins were transiently expressed at the early stage of chondrogenesis with a pattern similar to CREB phosphorylation. Electrophoretic mobility shift assays confirmed that the binding activity of CREB to the CRE is closely correlated to the phosphorylation pattern of CREB. Therefore, cAMP-mediated signal transduction to nuclear events for the induction of genes appeared to be required at the early stage of chick limb bud chondrogenesis.

Effect of Mild Hypothermia on the Mitogen Activated Protein Kinases in Experimental Stroke

  • Han, Hyung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.187-194
    • /
    • 2004
  • Middle cerebral artery occlusion (MCAO) results in cell death by activation of complex signal pathways for cell death and survival. Hypothermia is a robust neuroprotectant, and its effect has often been attributed to various mechanisms, but it is not yet clear. Upstream from the cell death promoters and executioners are several enzymes that may activate several transcription factors involved in cell death and survival. In this study, we immunohistochemically examined the phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase during early period of the ischemic injury, following 2 hours (h) of transient MCAO. Increased phosphorylation of ERK and p38 was observed in the vessels at 3 h, neuron-like cells at 6 and 12 h and glia-like cells at 12 h. Activation of JNK was not remarkable, and a few cells showed active JNK following ischemia. Phosphorylation of Elk-1, a transcription factor, was reduced by ischemic insult. Hypothermia attenuated the activation of ERK, p38 and JNK, and inhibited reduction of Elk-1. These data suggest that signals via different MAPK family members converge on the cell damage process and hypothermia protects the brain by interfering with these pathways.

Scutellaria baicalensis Georgi(SBG) inhibits Melanin Synthesis in Mouse B16 Melanoma Cells (α-MSH 유도성 멜라닌 합성에 있어서 황금 추출물의 역할과 작용기전 연구)

  • Hong, Sung-Jin;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.22 no.2
    • /
    • pp.104-117
    • /
    • 2009
  • Objective : Melanin is one of the most important facor in skin color. Melanin protects human skin from ultraviolet radiation otherwise it causes melanin pigmentation. So this experiment is carried out for test whether Scutellaria baicalensis Georgi(SBG) inhibits melanin synthesis and tyrosinase activity in mouse B16 melanoma cells. Method : The melanin synthesis inhibition effects of SBG were examined by in vitro melanin production assay. We assessed inhibitory effects of SBG on melanin contents from B16F1 melanoma cell, on tyrosinase activity(cell and cell free system), effect of SBG on the expression tyrosinase, Microphthalmia-associated Transcription Factor(MITF), Extracellular signal-regulated Kinase(ERK). Result : SBG inhibited melanin synthesis induced $\alpha$-MSH($\alpha$-Melanin Stimulating Hormone) in B16F1. SBG inhibited tyrosinase activity and expression. And SBG down-regulates MITF and stimulated ERK activation in B16F1. Conclusion : According to above results, SBG was improved its suppression effect to the inhibition of melanin synthesis, tyrosinase activation, and tyrosinase promotor activation. So SBG is considered to be used for an strong source of skin whitening effect.

  • PDF

Naringenin-Mediated ATF3 Expression Contributes to Apoptosis in Human Colon Cancer

  • Song, Hun Min;Park, Gwang Hun;Eo, Hyun Ji;Jeong, Jin Boo
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.140-146
    • /
    • 2016
  • Naringenin (NAR) as one of the flavonoids observed in grapefruit has been reported to exhibit an anti-cancer activity. Activating transcription factor 3 (ATF3) is associated with apoptosis in human colon cancer cells. This study was performed to investigate the molecular mechanism by which NAR stimulates ATF3 expression and apoptosis in human colon cancer cells. NAR reduced the cell viability and induced an apoptosis in human colon cancer cells. ATF3 overexpression increased NAR-mediated cleaved PARP, while ATF3 knockdown attenuated the cleavage of PARP by NAR. NAR increased ATF3 expression in both protein and mRNA level, and increased the luciferase activity of ATF3 promoter in a dose-dependent manner. The responsible region for ATF3 transcriptional activation by NAR is located between -317 and -148 of ATF3 promoter. p38 inhibition blocked NAR-mediated ATF3 expression, its promoter activation and apoptosis. The results suggest that NAR induces apoptosis through p38-dependent ATF3 activation in human colon cancer cells.

Lincomycin induces melanogenesis through the activation of MITF via p38 MAPK, AKT, and PKA signaling pathways

  • Lee, Min Suk;Chung, You Chul;Moon, Seung-Hyun;Hyun, Chang-Gu
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.323-331
    • /
    • 2021
  • Lincomycin is a lincosamide antibiotic isolated from the actinomycete Streptomyces lincolnensis. Moreover, it has been found to be effective against infections caused by Staphylococcus, Streptococcus, and Bacteroides fragillis. To identify the melanin-inducing properties of lincomycin, we used B16F10 melanoma cells in this study. The melanin content and intracellular tyrosinase activity in the cells were increased by lincomycin, without any cytotoxicity. Western blot analysis indicated that the protein expressions of tyrosinase, tyrosinase related protein 1 (TRP1) and TRP2 increased after lincomycin treatment. In addition, lincomycin enhanced the expression of master transcription regulator of melanogenesis, a microphthalmia-associated transcription factor (MITF). Lincomycin also increased the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and decreased the AKT phosphorylation. Moreover, the activation of tyrosinase activity by lincomycin was inhibited by the treatment with SB203580, which is p38 inhibitor. Furthermore, we also found that lincomycin-induced tyrosinase expression was reduced by H-89, a specific protein kinase A (PKA) inhibitor. These results indicate that lincomycin stimulate melanogenesis via MITF activation via p38 MAPK, AKT, and PKA signal pathways. Thus, lincomycin can potentially be used for treatment of hypopigmentation disorders.

Understanding of the functional role(s) of the Activating Transcription Factor 4(ATF4) in HIV regulation and production

  • Lee, Seong-Deok;Yu, Kyung-Lee;Park, Seong-Hyun;Jung, Yu-Mi;Kim, Min-Jeong;You, Ji-Chang
    • BMB Reports
    • /
    • v.51 no.8
    • /
    • pp.388-393
    • /
    • 2018
  • The activating transcription factor (ATF) 4 belongs to the ATF/CREB (cAMP Response Element Binding bZIP [Basic Leucine Zipper]) transcription factor family, and plays a central role in the UPR (Unfolded Protein Response) process in cells. The induction of ATF4 expression has previously been shown to increase the replication of HIV-1. However, the detailed mechanism underlying this effect and the factors involved in the regulation of ATF4 function are still unknown. Here, we demonstrate first that knocking out ATF4 using siRNA shows a strong negative effect on HIV-1 production, indicating that ATF4 is a functional positive cellular factor in HIV-1 production. To determine the mechanism by which ATF4 regulates the HIV-1 life cycle, we assessed the effect of the overexpression of wild type ATF4 and its various derivatives on HIV-1 LTR-mediated transcriptional activation and the production of HIV-1 particles. This effect was studied through co-transfection experiments with either reporter vectors or proviral DNA. We found that the N-terminal domains of ATF4 are involved in HIV-1 LTR-mediated transcriptional activation, and thus in HIV-1 production.

Molecular cloning of metal-responsive transcription factor-1 (MTF-1) and transcriptional responses to metal and heat stresses in Pacific abalone, Haliotis discus hannai

  • Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.7
    • /
    • pp.9.1-9.13
    • /
    • 2017
  • Background: Metal-responsive transcription factor-1 (MTF-1) is a key transcriptional regulator playing crucial roles in metal homeostasis and cellular adaptation to diverse oxidative stresses. In order to understand cellular pathways associated with metal regulation and stress responses in Pacific abalone (Haliotis discus hannai), this study was aimed to isolate the genetic determinant of abalone MTF-1 and to examine its expression characteristics under basal and experimentally stimulated conditions. Results: The abalone MTF-1 shared conserved features in zinc-finger DNA binding domain with its orthologs; however, it represented a non-conservative shape in presumed transactivation domain region with the lack of typical motifs for nuclear export signal (NES) and Cys-cluster. Abalone MTF-1 promoter exhibited various transcription factor binding motifs that would be potentially related with metal regulation, stress responses, and development. The highest messenger RNA (mRNA) expression level of MTF-1 was observed in the testes, and MTF-1 transcripts were detected during the entire period of embryonic and early ontogenic developments. Abalone MTF-1 was found to be Cd inducible and highly modulated by heat shock treatment. Conclusion: Abalone MTF-1 possesses a non-consensus structure of activation domains and represents distinct features for its activation mechanism in response to metal overload and heat stress. The activation mechanism of abalone MTF-1 might include both indirect zinc sensing and direct de novo synthesis of transcripts. Taken together, results from this study could be a useful basis for future researches on stress physiology of this abalone species, particularly with regard to heavy metal detoxification and thermal adaptation.

Anti-Cancer Activity of the Flower Bud of Sophora japonica L. through Upregulating Activating Transcription Factor 3 in Human Colorectal Cancer Cells

  • Lee, Jin Wook;Park, Gwang Hun;Eo, Hyun Ji;Song, Hun Min;Kim, Mi Kyoung;Kwon, Min Ji;Koo, Jin Suk;Lee, Jeong Rak;Lee, Man Hyo;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.28 no.3
    • /
    • pp.297-304
    • /
    • 2015
  • The flower buds of Sophora japonica L (SF), as a well-known traditional Chinese medicinal herb, have been used to treat bleeding-related disorders such as hematochezia, hemorrhoidal bleeding, dysfunctional uterine bleeding, and diarrhea. However, no specific anti-cancer effect and its molecular mechanism of SF have been described. Thus, we performed in vitro study to investigate if treatment of SF affects activating transcription factor 3 (ATF3) expression and ATF3-mediated apoptosis in human colorectal cancer cells. The effects of SF on cell viability and apoptosis were measured by MTT assay and Western blot analysis against cleaved poly (ADP-ribose) polymerase (PARP). ATF3 activation induced by SF was evaluated using Western blot analysis, RT-PCR and ATF3 promoter assay. SF treatment caused decrease of cell viability and increase of apoptosis in a dose-dependent manner in HCT116 and SW480 cells. Exposure of SF activated the levels of ATF3 protein and mRNA via transcriptional regulation in HCT116 and SW480 cells. Inhibition of extracellular signal-regulated kinases (ERK) 1/2 by PD98059 and p38 by SB203580 attenuated SF-induced ATF3 expression and transcriptional activation. Ectopic ATF3 overexpression accelerated SF-induced cleavage of PARP. These findings suggest that SF-mediated apoptosis may be the result of ATF3 expression through ERK1/2 and p38-mediated transcriptional activation.

Regulation of Chicken FABP4 Transcription by Toll-Like Receptor 3 Activation in DF-1 Cells

  • Jae Rung So;Sujung Kim;Ki-Duk Song
    • Korean Journal of Poultry Science
    • /
    • v.50 no.4
    • /
    • pp.283-291
    • /
    • 2023
  • Long-chain fatty acids (LCFAs) are vital in cellular compartments, primarily regulating lipid metabolism. Fatty Acid-Binding Proteins (FABPs) facilitate LCFA transport, lipid synthesis, storage, and act as signaling molecules influencing various pathways, including inflammation. FABP4, in particular, is linked to vascular and cardio-related diseases, and it plays a role in macrophage-mediated inflammatory responses. Previous studies have identified FABP4 as not only a representative biomarker for lipogenesis but also as having correlations with immune responses. This study aims to investigate the regulation of the chicken FABP4 (chFABP4) gene by toll-like receptor 3 (TLR3) activation and determine the signaling pathways that are involved in chFABP4 transcriptional regulation. We analyzed the transcriptional regulation of chFABP4 in TLR3-stimulated DF-1 cells. The results showed that chFABP4 was up-regulated upon stimulation with polyinosinic-polycytidylic acid (PIC), a TLR3 ligand. Notably, chFABP4 transcription was independently regulated in the NF-κB signaling pathway. It was up-regulated in p38 inhibition, demonstrating that the p38 signaling pathway might suppress the transcription of chFABP4 within TLR3-activated DF-1 cells. In contrast, chFABP4 expression was down-regulated in JNK signaling pathway inhibition, suggesting the positive regulation of JNK signaling pathway for chFABP4 transcription in DF-1 cells in response to TLR3 activation, consistent with findings in macrophages. MEK pathway inhibition resulted in a similar regulation to NF-κB signaling. These results suggest that each MAPK contributes differentially to the transcriptional regulation of chFABP4 by in DF-1 cells in response to TLR3 activation.

In Vitro Transcription Analyses of Autographa californica Nuclear Polyhedrosis Virus Genes

  • Huh, Nam-Eung
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.183-190
    • /
    • 1994
  • Cell-free extracts prepared from cultured insect cells, Spodoptera. frugiperda, were analyzed for activation of early gene transcription of an insect baculovirus, Autographa californica nuclear polyhedrosis virus (AcNPV). The template DNA used for in vitro transcription assays contained promoter sites for the baculovirus genes that have been classified as immediate early ($\alpha$) or early genes. These genes are located in the HindIII-K/Q region of the AcNPV genome. Nuclei isolated from the AcNPV-infected Spodoptera frugiperda cells were also used for in vitro transcription analysis by RNase-mapping the labeled RNA synthesized from in vitro run-on reaction in the isolated nuclei. The genes studied by this technique were p26 and pl0 genes which were classified as delayed early and late gene, respectively. We found that transcription of the genes from the HindIII-K region was accurately initiated and unique in the whole cell extract obtained from uninfected cells, although abundance of the in vitro transcripts was reverse to that of in vivo RNA. With isolated nuclei transcription of the p26 gene was inhibited by $\alpha$-amanitin suggesting that the p26 gene was transcribed by host RNA polymerase II. However, transcription of the pl0 gene in isolated nuclei was not inhibited by $\alpha$-amanitin, but rather stimulated by the inhibitor. We also found that the synthesis of $\alpha$-amanitin-resistant RNA polymerase was begun before 6 hr p.i., the time point at which the onset of viral DNA replication as well as the appearance of a-amanitin-resistant viral transcripts were detected. These studies give us strong evidence to support the previous data that early genes of AcNPV were transcribed by host RNA polymerease III, while transcription of late genes was mediated at least by a novel $\alpha$-amanitin-resistant RNA polymerase.

  • PDF