• 제목/요약/키워드: transconductance-to-drain current ratio ($g_{m}$/$I_{ds}$)

검색결과 2건 처리시간 0.017초

2D Transconductance to Drain Current Ratio Modeling of Dual Material Surrounding Gate Nanoscale SOl MOSFETs

  • Balamurugan, N.B.;Sankaranarayanan, K.;John, M.Fathima
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제9권2호
    • /
    • pp.110-116
    • /
    • 2009
  • The prominent advantages of Dual Material Surrounding Gate (DMSG) MOSFETs are higher speed, higher current drive, lower power consumption, enhanced short channel immunity and increased packing density, thus promising new opportunities for scaling and advanced design. In this Paper, we present Transconductance-to-drain current ratio and electric field distribution model for dual material surrounding gate (DMSGTs) MOSFETs. Transconductance-to-drain current ratio is a better criterion to access the performance of a device than the transconductance. This proposed model offers the basic designing guidance for dual material surrounding gate MOSFETs.

유연한 플라스틱 기판 위에서의 ZnO 나노선 FET소자의 전기적 특성 (Electrical characteristics of a ZnO nanowire-based Field Effect Transistor on a flexible plastic substrate)

  • 강정민;김기현;윤창준;염동혁;정동영;김상식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.149-150
    • /
    • 2006
  • A ZnO nanowire-based FET is fabricated m this study on a flexible substrate of PES. For the flat and bent flexible substrates, the current ($I_D$) versus drain-source bias voltage ($V_{DS}$) and $I_D$ versus gate voltage ($V_G$) results are compared. The flat band was Ion/Ioff ratio of ${\sim}10^7$, a transconductance of 179 nS and a mobility of ~10.104 cm2/Vs at $V_{DS}$ =1 V. Also bent to a radius curvature of 0.15cm and experienced by an approximately strain of 0.77 % are exhibited an Ion/Ioff ratio of ${\sim}10^7$, a transconductance of ~179 nS and a mobility of ${\sim}10.10 cm^2/Vs$ at $V_{DS}$ = 1V. The electrical characteristics of the FET are not changed very much. although the large strain is given on the device m the bent state.

  • PDF