• Title/Summary/Keyword: transactivation

Search Result 137, Processing Time 0.022 seconds

A Conclusive Review on Amyloid Beta Peptide Induced Cerebrovascular Degeneration and the Mechanism in Mitochondria

  • Merlin, Jayalal L.P.
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.125-137
    • /
    • 2013
  • Promising evidence suggests that amyloid beta peptide ($A{\beta}$), a key mediator in age-dependent neuronal and cerebrovascular degeneration, activates death signalling processes leading to neuronal as well as non-neuronal cell death in the central nervous system. A major cellular event in $A{\beta}$-induced apoptosis of non-neuronal cells, including cerebral endothelial cells, astrocytes and oligodendrocytes, is mitochondrial dysfunction. The apoptosis signalling cascade upstream of mitochondria entails $A{\beta}$ activation of neutral sphingomyelinase, resulting in the release of ceramide from membrane sphingomyelin. Ceramide then activates protein phosphatase 2A (PP2A), a member in the ceramide-activated protein phosphatase (CAPP) family. PP2A dephosphorylation of Akt and FKHRL1 plays a pivotal role in $A{\beta}$-induced Bad translocation to mitochondria and transactivation of Bim. Bad and Bim are pro-apoptotic proteins that cause mitochondrial dysfunction characterized by excessive ROS formation, mitochondrial DNA (mtDNA) damage, and release of mitochondrial apoptotic proteins including cytochrome c, apoptosis inducing factor (AIF), endonuclease G and Smac. The cellular events activated by $A{\beta}$ to induce death of non-neuronal cells are complex. Understanding these apoptosis signalling processes will aid in the development of more effective strategies to slow down age-dependent cerebrovascular degeneration caused by progressive cerebrovascular $A{\beta}$ deposition.

Recent Progress in Orphan Nuclear Hormone Receptors

  • Lee, Yoon-Kwang;Tzameli, Iphigeoia;Zavacki, Ann Marie;Moore, David D.
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.419-426
    • /
    • 1998
  • The nuclear hormone receptor superfamily currently includes approximately equal numbers of conventional receptors and orphan receptors, which do not have known ligands. Here, we review recent progress from this laboratory on three orphans, two of which are moving from orphan to conventional receptor status. Perhaps the most unusual is CAR, which is a constitutive transactivator in the absence of ligands but becomes transcriptionally inactive in the presence of its ligands, which are androgen metabolites. The response of CAR to its ligands is thus opposite to that of the conventional receptor paradigm. RIP14 (also known as FXR) is activated by both all-trans retinoic acid and a synthetic retinoid previously thought to specifically target the retinoic acid receptors (RARs), and thus appears to be a novel retinoid receptor. Finally, SHP is a novel orphan that lacks a DNA binding domain and interacts with a number of other receptor superfamily members. While it generally inhibits its targets, including CAR, the retinoid X receptor (RXR), and the estrogen receptor (ER), it stimulates transactivation by the orphan SF-1.

  • PDF

Repression of $PPAR{\gamma}$ Activity on Adipogenesis by $17{\beta}$-estradiol in Differentiated 3T3-L1 Cell

  • Yoon, Mi-Chung;Jeong, Sun-Hyo
    • Biomedical Science Letters
    • /
    • v.15 no.3
    • /
    • pp.179-185
    • /
    • 2009
  • In our previous report, we showed that $PPAR{\gamma}$ does not influence adipogenesis in females with functioning ovaries, indicating that $PPAR{\gamma}$ activity on adipogenesis is associated with sex-related factors. Among the sex-related factors, estrogen has been recognized as a major factor in inhibiting adiposgenesis in females. Thus, we hypothensized that $17{\beta}$-estradiol (E) inhibits 3T3-L1 cell adipogenesis by preventing $PPAR{\gamma}$ activity. E decreased triglyceirde accumulation in differentiated 3T3-L1 cells compared with control group. E also decreased the expression of $PPAR{\gamma}$ mRNA as well as $PPAR{\gamma}$ dependent adipocyte-specific genes, such as adipocyte fatty acid binding protein and tumor necrosis factor $\alpha$. In addition, E not only decreased luciferase reporter activity by $PPAR{\gamma}$, but also transfection of estrogen receptor $\alpha$ ($ER{\alpha}$) or $ER{\beta}$ led to decreases in $PPAR{\gamma}$ reporter gene activation. Moreover, E-activated ERs significantly decreased the luciferase reporter gene activation induced by $PPAR{\gamma}$ transfection, suggesting that estrogen-activated ERs inhibit $PPAR{\gamma}$-dependent transactivation. Accordingly, our results demonstrate that E inhibits the action of $PPAR{\gamma}$ on adipogenesis through E activated ER, providing evidence that lack of estrogen may potentiate $PPAR{\gamma}$ action on adipogenesis.

  • PDF

Quercetin Directly Interacts with Vitamin D Receptor (VDR): Structural Implication of VDR Activation by Quercetin

  • Lee, Ki-Young;Choi, Hye-Seung;Choi, Ho-Sung;Chung, Ka Young;Lee, Bong-Jin;Maeng, Han-Joo;Seo, Min-Duk
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.191-198
    • /
    • 2016
  • The vitamin D receptor (VDR) is a member of the nuclear receptor (NR) superfamily. The VDR binds to active vitamin $D_3$ metabolites, which stimulates downstream transduction signaling involved in various physiological activities such as calcium homeostasis, bone mineralization, and cell differentiation. Quercetin is a widely distributed flavonoid in nature that is known to enhance transactivation of VDR target genes. However, the detailed molecular mechanism underlying VDR activation by quercetin is not well understood. We first demonstrated the interaction between quercetin and the VDR at the molecular level by using fluorescence quenching and saturation transfer difference (STD) NMR experiments. The dissociation constant ($K_d$) of quercetin and the VDR was $21.15{\pm}4.31{\mu}M$, and the mapping of quercetin subsites for VDR binding was performed using STD-NMR. The binding mode of quercetin was investigated by a docking study combined with molecular dynamics (MD) simulation. Quercetin might serve as a scaffold for the development of VDR modulators with selective biological activities.

Identification of a PAS Domain-containing Protein in a Mammalian Hibernator, Murina leucogaster

  • Cho, Sang-Gil;Kim, Dong-Yong;Eom, Ki-Hyuk;Bae, Ki-Ho
    • Animal cells and systems
    • /
    • v.13 no.2
    • /
    • pp.119-125
    • /
    • 2009
  • Mammalian hibernation is a type of natural adaptation that allows organisms to avoid harsh environment and to increase the possibility of survival. To investigate the molecular link between circadian and hibernating rhythms in the greater tube-nosed bats, Murina leucogaster, we set out to identify circadian genes that are expressed in bats, with specific focus on the PAS domain by using PCR-based screens. We could isolate a eDNA clone, designated as LPAS1, that encodes a protein of 521 amino acid residues. LPAS1 is closely related with CLOCK family with the highest homology to human CLOCK. Based on RT-PCR analyses, LPAS1 transcripts are ubiquitously present in tissues from both summer active and winter dormant periods. Given that LPAS1 is a member of the bHLH-PAS protein superfamily but lacks polyglutamine transactivation domains, it is likely to function as a repressor for endogenous CLOCK to hinder its roles in promoting transcription. Our result will open a new avenue to further examine the functional interconnection between the circadian clock and the circannual clock such as mammalian hibernation.

A Novel PPARγ Agonist, SP1818, Shows Different Coactivator Profile with Rosiglitazone

  • Park, Yun-Sun;Choi, Ji-Won;Kim, Kun-Yong;Lim, Jong-Seok;Yoon, Suk-Joon;Yang, Young
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.77-82
    • /
    • 2010
  • Peroxisome proliferator-activated receptor $\gamma$ (PPAR${\gamma}$) is a ligand-activated transcription factor that is used as a target for anti-diabetic drug development. In a search for novel PPAR${\gamma}$ agonists, the $\beta$-carboxyethyl-rhodanine derivative SP1818 was identified. We report here the characteristics of SP1818 as a selective PPAR${\gamma}$ agonist. In transactivation assays, SP1818 selectively activated PPAR${\gamma}$, but the degree of PPAR${\gamma}$ stimulation was less than with $1{\mu}M$ rosiglitazone. SP1818 also stimulated glucose uptake in a concentration-dependent manner. The adipocyte differentiation markers adiponectin, scavenger receptor CD36 and aP2 were weakly induced by treatment with SP1818, and TRAP220 subunit was specifically recruited into PPAR${\gamma}$ activated by rosiglitazone but not PPAR${\gamma}$ activated by SP1818.

Dysregulation of NRF2 in Cancer: from Molecular Mechanisms to Therapeutic Opportunities

  • Jung, Byung-Jin;Yoo, Hwan-Sic;Shin, Sooyoung;Park, Young-Joon;Jeon, Sang-Min
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.57-68
    • /
    • 2018
  • Nuclear factor E2-related factor 2 (NRF2) plays an important role in redox metabolism and antioxidant defense. Under normal conditions, NRF2 proteins are maintained at very low levels because of their ubiquitination and proteasomal degradation via binding to the kelch-like ECH associated protein 1 (KEAP1)-E3 ubiquitin ligase complex. However, oxidative and/or electrophilic stresses disrupt the KEAP1-NRF2 interaction, which leads to the accumulation and transactivation of NRF2. During recent decades, a growing body of evidence suggests that NRF2 is frequently activated in many types of cancer by multiple mechanisms, including the genetic mutations in the KEAP1-NRF2 pathway. This suggested that NRF2 inhibition is a promising strategy for cancer therapy. Recently, several NRF2 inhibitors have been reported with anti-tumor efficacy. Here, we review the mechanisms whereby NRF2 is dysregulated in cancer and its contribution to the tumor development and radiochemoresistance. In addition, among the NRF2 inhibitors reported so far, we summarize and discuss repurposed NRF2 inhibitors with their potential mechanisms and provide new insights to develop selective NRF2 inhibitors.

AtbZIP16 and AtbZIP68, two new members of GBFs, can interact with other G group bZIPs in Arabidopsis thaliana

  • Shen, Huaishun;Cao, Kaiming;Wang, Xiping
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.132-138
    • /
    • 2008
  • AtbZIP16 and AtbZIP68 are two putative G group bZIP transcription factors in Arabidopsis thaliana, the other three members of G group bZIPs are GBF1-3 which can bind G-box. Members of G group have conservative protein structure: highly homological basic region and a proline-rich domain in the N-terminal region. Here, we report that AtbZIP16 and AtbZIP68 could bind cis elements with ACGT core, such as G-box, Hex, C-box and As-1, but with different binding affinities which from high to low were G-box > Hex > C-box > As-1; AtbZIP16 and AtbZIP68 could form homodimer and form heterodimer with other members of G group; N-terminal proline rich domain of AtbZIP16 had transactivation activity in yeast cells while that of AtbZIP68 did not; AtbZIP16 and AtbZIP68 GFP fusion protein localized in the nucleus of onion epidermal cells. These results indicated that AtbZIP16 and AtbZIP68 were two new members of GBFs. In Arabidopsis, AtbZIP16 and AtbZIP68 may also participate in light-responsive process in which GBF1-3 are involved.

An NMR study on the intrinsically disordered core transactivation domain of human glucocorticoid receptor

  • Kim, Do-Hyoung;Wright, Anthony;Han, Kyou-Hoon
    • BMB Reports
    • /
    • v.50 no.10
    • /
    • pp.522-527
    • /
    • 2017
  • A large number of transcriptional activation domains (TADs) are intrinsically unstructured, meaning they are devoid of a three-dimensional structure. The fact that these TADs are transcriptionally active without forming a 3-D structure raises the question of what features in these domains enable them to function. One of two TADs in human glucocorticoid receptor (hGR) is located at its N-terminus and is responsible for ~70% of the transcriptional activity of hGR. This 58-residue intrinsically-disordered TAD, named tau1c in an earlier study, was shown to form three helices under trifluoroethanol, which might be important for its activity. We carried out heteronuclear multi-dimensional NMR experiments on hGR tau1c in a more physiological aqueous buffer solution and found that it forms three helices that are ~30% pre-populated. Since pre-populated helices in several TADs were shown to be key elements for transcriptional activity, the three pre-formed helices in hGR tau1c delineated in this study should be critical determinants of the transcriptional activity of hGR. The presence of pre-structured helices in hGR tau1c strongly suggests that the existence of pre-structured motifs in target-unbound TADs is a very broad phenomenon.

c-Src Antisense Complexed with PAMAM Denderimes Decreases of c-Src Expression and EGFR-Dependent Downstream Genes in the Human HT-29 Colon Cancer Cell Line

  • Nourazarian, Ali Reza;Pashaei-Asl, Roghiyeh;Omidi, Yadollah;Najar, Ahmad Gholamhoseinian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2235-2240
    • /
    • 2012
  • c-Src is one member of non-receptor tyrosine kinase protein family that has over expression and activation in many human cancer cells. It has been shown that c-Src is implicated in various downstream signaling pathways associated with EGFR-dependent signaling such as MAPK and STAT5 pathways. Transactivation of EGFR by c-Src is more effective than EGFR ligands. To inhibit the c-Src expression, we used c-Src antisense oligonucleotide complexed with PAMAM Denderimes. The effect of c-Src antisense oligonucleotide on HT29 cell proliferation was determined by MTT assay. Then, the expression of c-Src, EGFR and the genes related to EGFR-depended signaling with P53 was applied by real time PCR. We used western blot analysis to elucidate the effect of antisense on the level of c-Src protein expression. The results showed, c-Src antisense complexed with PAMAM denderimers has an effective role in decrease of c-Src expression and EGFR-dependent downstream genes.