• 제목/요약/키워드: transactions

검색결과 45,732건 처리시간 0.054초

CNN 기반 감성 변화 패턴을 이용한 가짜뉴스 탐지 (Fake News Detection Using CNN-based Sentiment Change Patterns)

  • 이태원;박지수;손진곤
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권4호
    • /
    • pp.179-188
    • /
    • 2023
  • 최근 가짜뉴스는 뉴스 콘텐츠 형식을 가장하고 중요한 사건이 발생할 때마다 등장하여 사회적 혼란을 초래한다. 이에 가짜뉴스를 탐지하기 위한 연구로 인공지능 기술이 사용된다. 자연어 처리를 통해 가짜뉴스를 자동으로 인지 및 차단하거나, 네트워크 인과 추론과 결합함으로써 허위 정보를 확산시키는 소셜미디어 인플루언스 계정을 감지하는 등의 가짜뉴스 탐지 접근법이 딥러닝을 통해 구현될 수 있었다. 그러나 가짜뉴스 탐지는 여러 자연어 처리 분야 중에서도 해결이 어려운 문제로 분류된다. 가짜뉴스가 가지는 형식 및 표현의 다양성으로 특성 추출의 난도가 높고, 뉴스가 속한 범주에 따라 하나의 특성이 서로 다른 의미를 가질 수도 있는 등 다양한 한계점이 존재한다. 본 논문에서는 가짜뉴스를 탐지하기 위한 추가적인 식별 기준으로 감성 변화 패턴을 제시한다. 합성곱 신경망을 가짜뉴스 데이터 세트에 적용하여 콘텐츠 특성에 기반한 분석을 수행하고, 감성 변화 패턴을 추가로 분석함으로써 성능이 개선된 모델을 제안한다. 뉴스를 구성하는 문장에 대하여 감성 극성을 산출하고 장단기 메모리를 적용함으로써 문장 순서에 의존적인 결괏값을 얻을 수 있다. 이를 감성 변화의 패턴으로 정의하고 뉴스의 콘텐츠 특성과 결합하여 가짜뉴스 탐지를 위한 제안 모델의 독립변수로 활용한다. 제안 모델과 비교 모델을 딥러닝으로 학습시키고 가짜뉴스 데이터 세트를 이용한 실험을 진행하여 감성 변화 패턴이 가짜뉴스 탐지 성능을 개선할 수 있음을 확인한다.

AWS 기반 행위와 객체 인식을 통한 위협 상황 판단 시스템 (Threat Situation Determination System Through AWS-Based Behavior and Object Recognition)

  • 김예영;정수현;박소현;박영호
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권4호
    • /
    • pp.189-198
    • /
    • 2023
  • 길거리에서 묻지마 범죄가 자주 발생함에 따라 CCTV의 보급이 증가하고 있다. 그러나 수동적으로 작동되는 CCTV의 단점 때문에 지능형 CCTV의 필요성이 주목 받고 있다. 이러한 지능형 CCTV의 무거운 시스템 때문에, 높은 성능의 기기들이 필요해 일반 CCTV를 대체하는데 비용적 측면에서 부담이 발생한다. 이 문제를 해결하기 위해 낮은 품질의 영상도 인식하며 높지 않은 성능의 기기에서도 시스템이 구동되는 지능형 CCTV 시스템이 필요하다. 따라서 본 논문은 AWS 기반 플랫폼을 활용하여 시스템을 경량화하고 영상을 텍스트화하여 실시간으로 위협을 감지할 수 있는 Saying CCTV 시스템을 제안한다. 이는 YOLO v4와 OpenPose를 사용해 추출한 데이터를 바탕으로 위험 객체와 위협 행동 그리고 위협 상황을 판단하며, 위험도를 머신러닝으로 계산하도록 구현하였다. 이를 통해, 언제 어디서나 네트워크만 연결되면 시스템을 동작시킬 수 있으며, 영상 촬영과 이미지 업로드가 최소한의 성능의 기기에서도 시스템 사용이 가능하다. 나아가 영상을 분석하여 텍스트로 저장되는 데이터들로 하여금 범죄의 유의미한 통계를 자동화하여 신속한 범죄 예방이 가능하다.

온라인 커뮤니티에서 사용되는 댓글의 형태를 고려한 악플 탐지를 위한 전처리 기법 (Preprocessing Technique for Malicious Comments Detection Considering the Form of Comments Used in the Online Community)

  • 김해수;김미희
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권3호
    • /
    • pp.103-110
    • /
    • 2023
  • 인터넷이 보급되면서 사람들 간의 소통을 위한 커뮤니티가 활성화됨과 함께 익명 커뮤니티가 나타났고 익명성을 이용한 공격적인 게시글, 댓글을 남기는 등 타인에게 피해를 주는 행위를 하는 이용자가 많아지고 있다. 과거에는 관리자가 직접 글과 댓글을 확인하며 삭제 및 차단했지만, 커뮤니티 이용자가 늘어나면서 관리자가 계속 감시할 수 없는 수준에 이르렀다. 초기에는 특정 단어가 포함되면 해당 글을 게시하거나 댓글을 달 수 없는 형태로 악의적인 글이 게시되는 것을 막는 단어 필터링 기법을 사용하였으나 유사한 단어를 사용하는 등 우회하는 형식으로 필터링을 피해 갔다. 이를 해결하는 방법으로 딥러닝을 이용하여 실시간으로 이용자들이 게시하는 글들을 감시하였으나 최근 커뮤니티에서는 해당 커뮤니티에서만 이해할 수 있는 단어를 사용하거나 일반적인 한글이 아닌 인간의 시야에서만 이해할 수 있는 문자를 사용하고 있다. 이들이 사용하는 문자의 종류나 형태가 다양하여 인공지능 모델에 모든 것을 학습시키기에 어려움이 있다. 이에 본 논문에서는 한글의 자음과 모음 띄어쓰기 이미지를 학습시킨 CNN 모델을 이용해서 문장의 각 문자를 이미지화해 인간의 시야에서만 이해할 수 있는 문자를 모델이 예측한 문자로 변환하는 전처리 기법을 제안한다. 실험 결과, 제안한 전처리 기법을 통해 LSTM, BiLSTM, CNN-BiLSTM 모델에서의 성능이 각각 3.2%, 3.3%, 4.88% 증가함을 확인했다.

IP 카메라 보안의 문제점 분석 및 보완 방안 연구 (A Study on IP Camera Security Issues and Mitigation Strategies)

  • 신승진;박정흠;이상진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권3호
    • /
    • pp.111-118
    • /
    • 2023
  • 세계적으로 사이버 공격이 증가하고 있으며 CCTV, IP 카메라 해킹과 같은 개인의 사생활에 대한 공격도 증가하고 있다. 유튜브나 SNS, 다크웹과 같은 공간에서 IP 카메라 해킹 방법에 대해 검색해보면 손쉽게 자료를 구할 수 있고, 해킹 프로그램 또한 판매되고 있다. 해킹 프로그램이 이용하는 취약점이 존재하는 IP 카메라를 사용하면 비밀번호를 주기적으로 변경하거나 특수문자와 영어 대소문자, 숫자를 포함한 복잡한 암호를 사용하더라도 쉽게 해킹 피해를 본다. 뉴스나 언론 매체를 통해 IP 카메라 보안성에 대해 문제를 제기하고 피해 방지를 위한 대책을 제시하였으나 해킹 사건은 꾸준히 발생하고 있다. 이러한 해킹 피해를 막기 위하여 해킹 사건 원인을 파악하고 이에 대한 구체적인 대응 방안이 필요하다. 먼저 IP 카메라 해킹 사건의 원인으로 취약한 계정 설정과 IP 카메라의 웹 서버 취약점을 분석하고 이에 대한 해결 방법을 제시하였다. 그리고 해킹에 대한 구체적인 대응 방안으로 IP 카메라에 접속하면 알림이 오도록 하는 기능과 접속 기록을 저장하는 기능이 추가되어야 한다고 제안하였다. 이와 같은 기능이 있다면 피해 사실을 즉각 알아차릴 수 있고, 범인을 검거하는 데 중요한 자료를 남길 수 있다. 따라서 본 논문에서는 IP 카메라에 접속 알림 기능과 로깅 기능을 사용하여 해킹으로부터 안전성을 높이는 방법을 제시하였다.

CT 영상 기반 근감소증 진단을 위한 AI 영상분할 모델 개발 및 검증 (Development and Validation of AI Image Segmentation Model for CT Image-Based Sarcopenia Diagnosis)

  • 이충섭;임동욱;노시형;김태훈;고유선;김경원;정창원
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권3호
    • /
    • pp.119-126
    • /
    • 2023
  • 근감소증은 국내는 2021년 질병으로 분류되었을 만큼 잘 알려져 있지 않지만 고령화사회에 진입한 선진국에서는 사회적 문제로 인식하고 있다. 근감소증 진단은 유럽노인근감소증 진단그룹(EWGSOP)과 아시아근감소증진단그룹(AWGS)에서 제시하는 국제표준지침을 따른다. 최근 진단방법으로 절대적 근육량 이외에 신체수행평가로 보행속도 측정과 일어서기 검사 등을 통하여 근육 기능을 함께 측정할 것을 권고하고 있다. 근육량을 측정하기 위한 대표적인 방법으로 DEXA를 이용한 체성분 분석 방법이 임상에서 정식으로 실시하고 있다. 또한 MRI 또는 CT의 복부 영상을 이용하여 근육량을 측정하는 다양한 연구가 활발하게 진행되고 있다. 따라서 본 논문에서는 근감소증 진단을 위해서 비교적 짧은 촬영시간을 갖는 CT의 복부영상기반으로 AI 영상 분할 모델을 개발하고 다기관 검증한 내용을 기술한다. 우리는 CT 영상 중에 요추의 L3 영역을 분류하여 피하지방, 내장지방, 근육을 자동으로 분할할 수 있는 인공지능 모델을 U-Net 모델을 사용하여 개발하였다. 또한 모델의 성능평가를 위해서 분할영역의 IOU(Intersection over Union)를 계산하여 내부검증을 진행했으며, 타 병원의 데이터를 활용하여 동일한 IOU 방법으로 외부검증을 진행한 결과를 보인다. 검증 결과를 토대로 문제점과 해결방안에 대해서 검증하고 보완하고자 했다.

실시간 뎅기열 관리를 위한 관제시스템 개발 (Development of a Real-Time Control & Management System with In-Vitro Diagnostic Medical Device for Dengue Fever)

  • 안창선;박용호;문정대;박종찬;서영곤;손유락;최윤종;하양화;정봉수;김영주
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권2호
    • /
    • pp.77-84
    • /
    • 2023
  • 뎅기열 발병은 전 세계 인구의 약 1/3이 거주하고 있는 열대, 아열대 기후에 집중되며, 우리나라도 아열대 기후로 바꾸고 있어 뎅기열 발병에 취약해지고 있다. 뎅기열은 감염병 관리 차원에서 진단 이력 관리가 중요하다. 감염병 이력에 따라서 지역별, 연령별, 남녀비율 등에 따라서 개개인의 치료 방법과 전략을 수립할 수 있는 체계가 필요하다. 본 논문에서는 뎅기열 관제시스템을 제안하며, 이러한 시스템은 뎅기열의 발병에 대한 체외진단기기를 이용한 실시간 집계방식으로 발병률과 사망률을 감소시킬 수 있는 전략을 수립하는 데 유용하게 활용될 수 있다. 뎅기열 관리를 위한 관제시스템 구성으로 형광면역진단 키트를 이용한 뎅기열 체외진단기기와 실시간 뎅기열 관제시스템으로 구성되어 있다. 본 논문으로 개발된 뎅기열 관제시스템은 향후 정부의 감염병 통합정보와 결합되어 다양한 감염병 관리 및 정책 활용을 위해서 활용될 수 있을 것이다.

웨이퍼 정렬을 위한 움직임 벡터 기반의 오버레이 계측 알고리즘 (Motion Vector Based Overlay Metrology Algorithm for Wafer Alignment)

  • 이현철;우호성
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권3호
    • /
    • pp.141-148
    • /
    • 2023
  • 반도체 제품의 높은 수율을 달성하기 위해서는 정확한 오버레이 계측이 필수적이다. 오버레이 계측 성능은 오버레이 타깃 설계와 측정 방법에 많은 영향을 받는다. 따라서 오버레이 타깃은 성능 개선을 위해 다양한 타깃에 적용할 수 있는 측정 방법들이 요구된다. 본 연구는 이미지 기반의 오버레이를 측정할 수 있는 새로운 알고리즘을 제안한다. 제안하는 측정 알고리즘은 움직임 벡터를 이용하는 방법으로 서브 픽셀 단위의 위치를 추정할 수 있다. 움직임 벡터는 선택된 영역의 픽셀들을 이용하여 다항식 전개를 통해 2차 방정식의 모델을 생성한다. 그 후 모델을 이용하여 서브픽셀 단위의 위치를 추정할 수 있다. 움직임 벡터를 활용한 측정방법은 X축, Y축의 적층 오류를 각각 계산하는 기존 상관계수 기반의 측정방법과는 달리 한 번에 모든 방향의 적층 오류를 계산할 수 있다. 따라서 X축과 Y축의 관계를 반영하여 보다 정확한 오버레이 측정이 가능하다. 하지만 기존 상관계수 기반의 알고리즘보다 계산량이 증가하기 때문에 더 많은 연산시간이 사용될 수 있다. 본 연구에서는 기존 방법보다 개선된 알고리즘을 제시하는 것이 아닌 새로운 측정 방법의 방향을 제안하는 것에 목적을 두고 있다. 실험 결과를 통해 기존 방법과 유사한 정밀도의 측정 결과를 얻을 수 있음을 확인하였다.

데이터 기반 리튬 이온 배터리 성능 예측을 위한 학습 데이터 모델 정의 및 기계학습 분석 (Learning Data Model Definition and Machine Learning Analysis for Data-Based Li-Ion Battery Performance Prediction)

  • 김병욱;박지수;장홍준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권3호
    • /
    • pp.133-140
    • /
    • 2023
  • 리튬 이온 배터리는 사용 환경과 양극재 조합 비율에 따라 배터리의 성능이 좌우된다. 고성능 리튬 이온 배터리를 개발하기 위해서는 양극재 비율을 다양하게 변화시켜가면서 배터리를 제작하고 성능을 측정해야 한다. 하지만 모든 변수 조합에 대해 배터리를 제작하고 성능을 측정하기에는 많은 시간과 비용이 소모된다. 그렇기 때문에 최근에는 데이터 기반으로 인공지능 모델을 활용하여 배터리의 성능을 예측하고자 하는 연구가 활발히 진행되고 있다. 그러나 기존 공개 배터리 데이터는 동일한 배터리로 측정 실험을 하였기 때문에 양극재 조합 비율은 고정되어 있어서 데이터 속성으로 포함되지 않았다. 본 논문에서는 양극재 소재 조합 비율에 따른 배터리의 성능을 예측할 수 있는 인공지능 모델 개발에 필요한 학습 데이터 모델을 정의한다. 우리는 리튬 이온 배터리의 성능에 영향을 미칠 수 있는 요인을 분석하여 양극재 소재별 질량과 배터리 사용 환경을 입력데이터로, 배터리의 출력과 용량을 목적 데이터로 정의하였다. 공개 배터리 데이터 중에는 양극재 비율이 포함된 데이터가 없어 양극재 비율을 모두 동일한 값으로 설정한 제한된 데이터로 다중 선형회귀 분석, 서포트 벡터 회귀분석, 다중 로지스틱 회귀 분석, LSTM 분석을 수행하였다. 실험 환경이 다른 배터리 데이터에서 각각의 배터리 데이터는 고유한 패턴을 유지하였으며, 배터리 분류 모델은 각각의 배터리를 약 2%의 오차로 분류하는 것으로 나타났다.

언어 정보가 반영된 문장 점수를 활용하는 삭제 기반 문장 압축 (Deletion-Based Sentence Compression Using Sentence Scoring Reflecting Linguistic Information)

  • 이준범;김소언;박성배
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권3호
    • /
    • pp.125-132
    • /
    • 2022
  • 문장 압축은 원본 문장의 중요한 의미는 유지하면서 길이가 축소된 압축 문장을 생성하는 자연어처리 태스크이다. 문법적으로 적절한 문장 압축을 위해, 초기 연구들은 사람이 정의한 언어 규칙을 활용하였다. 또한 시퀀스-투-시퀀스 모델이 기계 번역과 같은 다양한 자연어처리 태스크에서 좋은 성능을 보이면서, 이를 문장 압축에 활용하고자 하는 연구들도 존재했다. 하지만 언어 규칙을 활용하는 연구의 경우 모든 언어 규칙을 정의하는 데에 큰 비용이 들고, 시퀀스-투-시퀀스 모델 기반 연구의 경우 학습을 위해 대량의 데이터셋이 필요하다는 문제점이 존재한다. 이를 해결할 수 있는 방법으로 사전 학습된 언어 모델인 BERT를 활용하는 문장 압축 모델인 Deleter가 제안되었다. Deleter는 BERT를 통해 계산된 perplexity를 활용하여 문장을 압축하기 때문에 문장 압축 규칙과 모델 학습을 위한 데이터셋이 필요하지 않다는 장점이 있다. 하지만 Deleter는 perplexity만을 고려하여 문장을 압축하기 때문에, 문장에 속한 단어들의 언어 정보를 반영하여 문장을 압축하지 못한다. 또한, perplexity 측정을 위한 BERT의 사전 학습에 사용된 데이터가 압축 문장과 거리가 있어, 이를 통해 측정된 perplexity가 잘못된 문장 압축을 유도할 수 있다는 문제점이 있다. 이를 해결하기 위해 본 논문은 언어 정보의 중요도를 수치화하여 perplexity 기반의 문장 점수 계산에 반영하는 방법을 제안한다. 또한 고유명사가 자주 포함되어 있으며, 불필요한 수식어가 생략되는 경우가 많은 뉴스 기사 말뭉치로 BERT를 fine-tuning하여 문장 압축에 적절한 perplexity를 측정할 수 있도록 하였다. 영어 및 한국어 데이터에 대한 성능 평가를 위해 본 논문에서 제안하는 LI-Deleter와 비교 모델의 문장 압축 성능을 비교 실험을 진행하였고, 높은 문장 압축 성능을 보임을 확인하였다.

다변량 시계열 분석에 기반한 쿠버네티스 오토-스케일링 개선 (An Improvement of Kubernetes Auto-Scaling Based on Multivariate Time Series Analysis)

  • 김용회;김영한
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권3호
    • /
    • pp.73-82
    • /
    • 2022
  • 오토-스케일링은 클라우드 컴퓨팅 기술이 ICT 핵심 기반 기술로 자리 잡을 수 있는 가장 중요한 기능 중 하나로써 사용자나 서비스 요청의 폭발적인 증가 또는 감소에도 시스템 자원과 서비스 인스턴스를 적절하게 확장 또는 축소하여 상황에 맞는 서비스의 안정성과 비용 대비 효과를 향상하는 기술이다. 하지만 특정 시스템 자원에 대한 모니터링 시점의 단일 메트릭 데이터를 기반으로 정책이 수립·실행되다 보니 이미 서비스에 영향이 있거나 실제 필요한 서비스 인스턴스를 세밀하게 관리하지 못하는 문제점이 있다. 이러한 문제점을 해결하기 위해서 본 논문에서는 시스템 자원과 서비스 응답시간을 다변량 시계열 분석 모델을 사용하여 분석·예측하고 이를 기반으로 오토-스케일링 정책을 수립하는 방안을 제안한다. 이를 검증하기 위해 쿠버네티스 환경에서 커스텀 스케쥴러를 구현하고, 실험을 통해 쿠버네티스 기본 오토-스케일링 방식과 비교 분석한다. 제안하는 기법은 시스템 자원과 응답시간 사이의 영향에 기반한 예측 데이터를 활용하여 예상되는 상황에 대한 오토-스케일링을 선제적으로 실행함으로써 시스템의 안정성을 확보하고 서비스 품질이 저하되지 않는 범위내에서 필요한 만큼의 인스턴스를 세밀하게 관리할 수 있는 결과를 보인다.