• Title/Summary/Keyword: trans-polyisoprene

Search Result 2, Processing Time 0.017 seconds

Fabrication of CNT/MgCl2-Supported Ti-based Ziegler-Natta Catalysts for Trans-selective Polymerization of Isoprene

  • Cao, Lan;Zhang, Xiaojie;Wang, Xiaolei;Zong, Chengzhong;Kim, Jin Kuk
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.158-167
    • /
    • 2018
  • In this study, in-situ trans-selective polymerization of isoprene was carried out using titanium-based Ziegler-Natta catalysts. The catalysts were prepared by high-energy ball milling. Individually Large-inner-diameter carbon nanotubes (CNTL), and hydroxylated carbon nanotubes (CNTOH), along with magnesium chloride ($MgCl_2$) were used as the carriers for the catalysts. The optimum ball-milling time for preparing the $CNT/MgCl_2/TiCl_4$ Ziegler-Natta catalysts was 4 h. The $CNTOH/MgCl_2/TiCl_4$ catalyst showed a higher efficiency than that of the $CNTL/MgCl_2/TiCl_4$ catalyst, based on the rate of polymerization. The effects of the CNT-filler type on the isoprene polymerization behaviors and polymer properties were investigated. The morphologies of the trans-1,4-polyisoprene (TPI)/CNT and TPI/CNTOH nanocomposites exhibited a tube-like shape, and the CNTL and CNTOH fillers were well dispersed in the TPI matrix. In addition, the thermal stability of TPI significantly increased upon the introduction of a small amount of both CNTL/CNTOH fillers (0.15 wt%), owing to the satisfactory dispersion of the CNTL/CNTOH in the TPI matrix.

Study on the Polymerization Characteristics of Isoprene through Nitroxide Mediated Controlled/"living" Radical Polymerization Techniques (Nitroxide 매개 리빙라디칼 중합법에 의한 isoprene의 중합특성에 관한 연구)

  • Hong, Sung-Chul
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.55-62
    • /
    • 2009
  • In this study, investigation on the polymerization characteristics of isoprene through nitroxide mediated controlled/"living" radical polymerization techniques was attempted. In the presence of acetol, linear increase of isoprene conversion with time and low polydispersities of the resulting polymers ($M_w/M_n$ < 1.5) were observed, which suggest successful controlled/"living" radical polymerization of isoprene. The microstructure of the resulting polyisoprene was composed of $\sim$ 22% of 3, 4, $\sim$30% of 1, 4-cis and $\sim$ 48% of 1, 4-trans. The optimum polymerization temperature was 145 $^{circ}C$, below which no significant polymerization behavior was observed. Non-cyclic nitroxide, such as di-tert-butyl nitroxide (DTBN) could not mediate the polymerization, whereas cyclic nitroxides (2, 2, 6, 6-tetramethyl-1-peperidine 1-oxyl (TEMPO) and 4-oxo-2, 2, 6, 6-tetramethyl-1-peperidine 1-oxyl (oxoTEMPO)) were successfully employed for the polymerization. However, isoprene dimerization reaction through Diels-Alder process was also observed at the given polymerization condition, which afforded a significant amount of limonene. Isoprene thermal autoinitiation was also possible, which was, however, considered to be not significant under the given polymerization condition.