• 제목/요약/키워드: trans-glycosylation

검색결과 4건 처리시간 0.017초

A Facile Synthesis of p-Nitrophenyl Glycosides

  • Yoon, Shin-Sook;Kim, Dong-Sung;Nam Shin, Jeong E.
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권7호
    • /
    • pp.559-563
    • /
    • 1994
  • Glycosylation of benzoylated glycosyl halides of glucose, galactose and mannose with potassium p-nitrophenoxide and 18-crown-6 complex in chloroform resulted in the stereospecific formation of 1,2-trans p-nitrophenyl glycopyranosides in good yields. The same reaction with benzylated mannopyranosyl chloride gave the ${\alpha}-and\;{\beta}-p-nitrophenyl$ mannopyranosides in 3 : 1 ratio. However, acetylated 2-azido-altropyranosyl chloride gave ${\beta}-p-nitrophenyl$ altropyranoside only.

Observation of Cellodextrin Accumulation Resulted from Non-Conventional Secretion of Intracellular β-Glucosidase by Engineered Saccharomyces cerevisiae Fermenting Cellobiose

  • Lee, Won-Heong;Jin, Yong-Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.1035-1043
    • /
    • 2021
  • Although engineered Saccharomyces cerevisiae fermenting cellobiose is useful for the production of biofuels from cellulosic biomass, cellodextrin accumulation is one of the main problems reducing ethanol yield and productivity in cellobiose fermentation with S. cerevisiae expressing cellodextrin transporter (CDT) and intracellular β-glucosidase (GH1-1). In this study, we investigated the reason for the cellodextrin accumulation and how to alleviate its formation during cellobiose fermentation using engineered S. cerevisiae fermenting cellobiose. From the series of cellobiose fermentation using S. cerevisiae expressing only GH1-1 under several culture conditions, it was discovered that small amounts of GH1-1 were secreted and cellodextrin was generated through trans-glycosylation activity of the secreted GH1-1. As GH1-1 does not have a secretion signal peptide, non-conventional protein secretion might facilitate the secretion of GH1-1. In cellobiose fermentations with S. cerevisiae expressing only GH1-1, knockout of TLG2 gene involved in non-conventional protein secretion pathway significantly delayed cellodextrin formation by reducing the secretion of GH1-1 by more than 50%. However, in cellobiose fermentations with S. cerevisiae expressing both GH1-1 and CDT-1, TLG2 knockout did not show a significant effect on cellodextrin formation, although secretion of GH1-1 was reduced by more than 40%. These results suggest that the development of new intracellular β-glucosidase, not influenced by non-conventional protein secretion, is required for better cellobiose fermentation performances of engineered S. cerevisiae fermenting cellobiose.

B3GNT2, a Polylactosamine Synthase, Regulates Glycosylation of EGFR in H7721 Human Hepatocellular Carcinoma Cells

  • Qiu, Hao;Duan, Wei-Ming;Shu, Jie;Cheng, Hong-Xia;Wang, Wei-Ping;Huang, Xin-En;Chen, Hui-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10875-10878
    • /
    • 2015
  • The epidermal growth factor receptor (EGFR) is an important surface receptor with N-glycans in its extracellular domain, whose glycosylation is essential for its function, especially in tumor cells. Here, we demonstrated that polylactosamine is markedly increased in H7721 hepatocellular carcinoma cells after treatment with EGF, while it apparently declined after exposure to all-trans retinoic acid (ATRA). In the study of the enzymatic mechanism of this phenomenon, we explored changes in the expression of poly-N-acetyllactosamine (PLN) branching glycosyltransferases using RT-PCR. Among the four glycosyltransferases with altered expression, GnT-V was most elevated by EGF, while GnT-V and B3GNT2 were most declined by ATRA. Next, we conducted co-immunoprecipitation experiments to test whether B3GNT2 and EGFR associate with each other. We observed that EGFR is a B3GNT2-targeting protein in H7721 cells. Taken together, these findings indicated that the altered expression of B3GNT2 will remodel the PLN stucture of EGFR in H7721 cells, which may modify downstream signal transduction.

Heterologous Expression of Yeast Prepro-$\alpha$-factor in Rat $GH_3$ Cells

  • Lee, Myung-Ae;Cheong, Kwang-Ho;Han, Sang-Yeol;Park, Sang-Dai
    • Animal cells and systems
    • /
    • 제4권2호
    • /
    • pp.157-163
    • /
    • 2000
  • Yeast pheromone a-factor is a 13-amino acid peptide hormone that is synthesized as a part of a larger precursor, prepro-$\alpha$-factor, consisting of a signal peptide and a proregion of 64 amino acids. The carboxy-terminal half of the precursor contains four tandem copies of mature $\alpha$-factor. To investigate the molecular basis of intracellular sorting, proteolytic processing, and storage of the peptide hormone, yeast prepro-$\alpha$-factor precursors were heterologously expressed in rat pituitary $GH_3 cells. When cells harboring the precursor were metabolically labeled, a species of approximately 27 kD appeared inside the cells. Digestion with peptide: N-glycosidase F (PNG-F) shifted the molecular mass to a 19 kD, suggesting that the 27 kD protein was the glycosylated form as in yeast cells. The nascent polypeptide is efficiently targeted to the ER in the $GH_3 cells, where it undergoes cleavage of its signal peptide and core glycosylation to generate glycosylated pro-a-factor. To look at the post ER intracellular processing, the pulse-labelled cells were chased up to 2 hrs. The nascent propeptides disappeared from the cells at a half life of 30 min and only 10-25% of the newly synthesized, unprocessed precursors were stored intracellularly after the 2 h chase. However, about 20% of the pulse-labeled pro-$\alpha$-factor precursors were secreted into the medium in the pro-hormone form. With increasing chase time, the intracellular level of propeptide decreased, but the amount of secreted propeptide could not account for the disappearance of intracellular propeptide completely. This disappearance was insensitive to lysosomotropic agents, but was inhibited at $16^{circ}C or 20^{\circ}C$, suggesting that the turnover of the precursors was not occurring in the secretory pathway to trans Golgi network (TGN) or dependent on acidic compartments. From these results, it is concluded that a pan of these heterologous precursors may be processed at its paired dibasic sites by prohormone processing enzymes located in TGN/secretpry vesicles producing small peptides, and that the residual unprocessed precursors may be secreted into the medium rather than degraded intracellularly.

  • PDF