• Title/Summary/Keyword: trajectory simulation

검색결과 934건 처리시간 0.03초

실시간 비선형 최적화 알고리즘을 이용한 족형 로봇의 Swing 궤적 최적화 방법 (Swing Trajectory Optimization of Legged Robot by Real-Time Nonlinear Programming)

  • 박경덕;최정수;공경철
    • 제어로봇시스템학회논문지
    • /
    • 제21권12호
    • /
    • pp.1193-1200
    • /
    • 2015
  • An effective swing trajectory of legged robots is different from the swing trajectories of humans or animals because of different dynamic characteristics. Therefore, it is important to find optimal parameters through experiments. This paper proposes a real-time nonlinear programming (RTNLP) method for optimization of the swing trajectory of the legged robot. For parameterization of the trajectory, the swing trajectory is approximated to parabolic and cubic spline curves. The robotic leg is position-controlled by a high-gain controller, and a cost function is selected such that the sum of the motor inputs and tracking errors at each joint is minimized. A simplified dynamic model is used to simulate the dynamics of a robotic leg. The purpose of the simulation is to find the feasibility of the optimization problem before an actual experiment occurs. Finally, an experiment is carried out on a real robotic leg with two degrees of freedom. For both the simulation and the experiment, the design variables converge to a feasible point, reducing the cost value.

Design of a Sliding Mode Control-Based Trajectory Tracking Controller for Marine Vehicles

  • Xu, Zhi-Zun;Kim, Heon-Hui;Park, Gyei-Kark;Nam, Taek-Kun
    • 한국항해항만학회지
    • /
    • 제42권2호
    • /
    • pp.87-96
    • /
    • 2018
  • A trajectory control system plays an important role in controlling motions of marine vehicle when a series of way points or a path is given. In this paper, a sliding mode control (SMC)-based trajectory tracking controller for marine vehicles is presented. A small-sized unmanned ship is considered as a control object. Both speed and heading angle of a ship should be controlled for tracking control. The common point of related researches was to separate ship's speed and heading angle in control methods. In this research, a new control law from a general sliding mode theory that can be applied to MIMO (multi input multi output) system is derived and both speed and heading angle of a ship can be controlled simultaneously. The propulsion force and rudder force are also applied in modeling stage to achieve accurate simulation. Disturbance induced by wind is also tackled in the dynamics considering robustness of the proposed control scheme. In the simulation, we employed a way-point method to generate ship's trajectory and applied the proposed control scheme to ship's trajectory tracking control. Our results confirmed that the tracking error was converged to zero, thus demonstrating the effectiveness of the proposed method.

Way-points 방식과 Event-driven 방식의 운동궤적 모델링 비교 (A Comparison of the Way-points and the Event-points and the Event-driven Dynamic Trajectory Modeling)

  • 김옥휴
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1999년도 춘계학술대회 논문집
    • /
    • pp.88-92
    • /
    • 1999
  • As a part of work to simulate electromagnetic environments for Hardware-In-the-Loop(HIL) simulation, the dynamic trajectory is modeled by the Way-points method and the Event-driven method for the aerial and the naval targets. The simulated results show that the Way-points method and the Event-driven method are appropriate to simulate a low speed and a high speed target respectively.

  • PDF

제어구조 변경과 신경망 보정에 의한 적응제어에 관한 연구 (A Research on the Adaptive Control by the Modification of Control Structure and Neural Network Compensation)

  • 김윤상;이종수;최경삼
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.812-814
    • /
    • 1999
  • In this paper, we propose a new control algorithm based on the neural network(NN) feedback compensation with a desired trajectory modification. The proposed algorithm decreases trajectory errors by a feed-forward desired torque combined with a neural network feedback torque component. And, to robustly control the tracking error, we modified the desired trajectory by variable structure concept smoothed by a fuzzy logic. For the numerical simulation, a 2-link robot manipulator model was assumed. To simulate the disturbance due to the modelling uncertainty. As a result of this simulation, the proposed method shows better trajectory tracking performance compared with the CTM and decreases the chattering in control inputs.

  • PDF

로봇 제어를 위한 변형 기준 경로 발생 알고리즘의 개발 (The development of generating reference trajectory algorithm for robot manipulator)

  • 민경원;이종수;최경삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.912-915
    • /
    • 1996
  • The computed-torque method (CTM) shows good trajectory tracking performance in controlling robot manipulator if there is no disturbance or modelling errors. But with the increase of a payload or the disturbance of a manipulator, the tracking errors become large. So there have been many researches to reduce the tracking error. In this paper, we propose a new control algorithm based on the CTM that decreases a tracking error by generating new reference trajectory to the controller. In this algorithm we used the concept of sliding mode theory and fuzzy system to reduce chattering in control input. For the numerical simulation, we used a 2-link robot manipulator. To simulate the disturbance due to a modelling uncertainty, we added errors to each elements of the inertia matrix and the nonlinear terms and assumed a payload to the end-effector. In this simulation, proposed method showed better trajectory tracking performance compared with the CTM.

  • PDF

임피던스 제어와 적분 슬라이딩 모드 제어를 이용한 메카넘 휠 이동로봇의 강인한 궤도 추적 제어 (Robust Trajectory Tracking Control of a Mecanum Wheeled Mobile Robot Using Impedance Control and Integral Sliding Mode Control)

  • 우철민;이민욱;윤태성
    • 로봇학회논문지
    • /
    • 제13권4호
    • /
    • pp.256-264
    • /
    • 2018
  • Unlike normal wheels, the Mecanum wheel enables omni-directional movement regardless of the orientation of a mobile robot. In this paper, a robust trajectory tracking control method is developed based on the dynamic model of the Mecanum wheel mobile robot in order that the mobile robot can move along the given path in the environment with disturbance. The method is designed using the impedance control to make the mobile robot to track the path, and the integral sliding mode control for robustness to disturbance. The good performance of the proposed method is verified using the MATLAB /Simulink simulation and also through the experiment on an actual Mecanum wheel mobile robot. In both the simulation and the experimentation, we make the mobile robot move along a reference trajectory while maintaining the robot's orientation at a constant angle to see the characteristics of the Mecanum wheel.

Active Trajectory Tracking Control of AMR using Robust PID Tunning

  • Tae-Seok Jin
    • 한국산업융합학회 논문집
    • /
    • 제27권4_1호
    • /
    • pp.753-758
    • /
    • 2024
  • Trajectory tracking of the AMR robot is one research for the AMR robot navigation. For the control system of the Autonomous mobile robot(AMR) being in non-honolomic system and the complex relations among the control parameters, it is d ifficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive tracking controller based on the PID for AMR robot trajectory tracking. The method uses a non-linear model of AMR robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven non-holonomic AMR robot is carried out in the velocity and orientation tracking control of the non-holonomic AMR. The simulation results of wheel type AMR robot platform show that the proposed controller is more robust than the conventional back-stepping controller to show the effectiveness of the proposed algorithm.

차량 궤적 예측기법을 이용한 차간 거리 제어 (Vehicle - to - Vehicle Distance Control using a Vehicle Trajectory Prediction Method)

  • 조상민;이경수
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.123-129
    • /
    • 2002
  • This paper proposes a vehicle trajectory prediction method far application to vehicle-to-vehicle distance control. This method is based on 2-dimensional kinematics and a Kalman filter has been used to estimate acceleration of the object vehicle. The simulation results using the proposed control method show that the relative distance characteristics can be improved via the trajectory prediction method compared to the customary intelligent cruise control algorithm.

차량 궤적 예측기법을 이용한 충돌 경보/회피 알고리듬 개발 (Development of Collision Warning/Avoidance Algorithms using Vehicle Trajectory Prediction Method)

  • 김재호;이경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.647-652
    • /
    • 2000
  • This paper proposes a collision warning/avoidance algorithm using a trajectory prediction method. This algorithm is based on 2-dimensional kinematics and the Kalman filter has been used to obtain the information of the object vehicle. This algorithm has been investigated via computer simulation and showed a good trajectory prediction performance. The proposed collision warning/avoidance algorithm would enhanced driver acceptance for a collision warning/avoidance system.

  • PDF

기능적 여유자유도를 가지는 CTS 시스템의 기구학/역기구학 해석 (Kinematic/Inverse Kinematic Analysis of Captive Trajectory Simulation System with Functional Redundancy)

  • 이도관;이상정
    • 한국생산제조학회지
    • /
    • 제26권3호
    • /
    • pp.263-271
    • /
    • 2017
  • A captive trajectory simulation (CTS) system is used to investigate the separation behavior of the store model by moving the model to an arbitrary pose and position based on aerodynamic data. A CTS system operated inside a wind tunnel is designed to match the structure of the wind tunnel facility. As a result, each CTS system has different kinematic structure, and inverse kinematic analysis of the system is necessary. In this study, kinematic/inverse kinematic analysis for the CTS system with functional redundancy is performed. Inverse kinematic analysis with combined numerical and analytical approach is especially proposed. The suggested approach utilizes the redundancy to improve the safety of the system, and has advantages in real time analysis.