• Title/Summary/Keyword: training wall

Search Result 100, Processing Time 0.023 seconds

Reliability analysis of external and internal stability of reinforced soil under static and seismic loads

  • Ahmadi, Rebin;Jahromi, Saeed Ghaffarpour;Shabakhty, Naser
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.599-614
    • /
    • 2022
  • In this study, the reliability analysis of internal and external stabilities of Reinforced Soil Walls (RSWs) under static and seismic loads are investigated so that it can help the geotechnical engineers to perform the design more realistically. The effect of various variables such as angle of internal soil friction, soil specific gravity, tensile strength of the reinforcements, base friction, surcharge load and finally horizontal earthquake acceleration are examined assuming the variables uncertainties. Also, the correlation coefficient impact between variables, sensitivity analysis, mean change, coefficient of variation and type of probability distribution function were evaluated. In this research, external stability (sliding, overturning and bearing capacity) and internal stability (tensile rupture and pull out) in both static and seismic conditions were investigated. Results of this study indicated sliding as the predominant failure mode in the external stability and reinforcing rupture in the internal stability. First-Order Reliability Method (FORM) are applied to estimate the reliability index (or failure probability) and results are validated using the Monte Carlo Simulation (MCS) method. The results showed among all variables, the internal friction angle and horizontal earthquake acceleration have dominant impact on the both reinforced soil wall internal and external stabilities limit states. Also, the type of probability distribution function affects the reliability index significantly and coefficient of variation of internal friction angle has the greatest influence in the static and seismic limits states compared to the other variables.

Database of virtual spectrum of artificial radionuclides for education and training in in-situ gamma spectrometry

  • Yoomi Choi;Young-Yong Ji;Sungyeop Joung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.190-200
    • /
    • 2023
  • As the field of application of in-situ gamma spectroscopy is diversified, proficiency is required for consistent and accurate analysis. In this study, a program was developed to virtually create gamma energy spectra of artificial nuclides, which are difficult to obtain through actual measurements, for training. The virtual spectrum was created by synthesizing the spectra of the background radiation obtained through actual measurement and the theoretical spectra of the artificial radionuclides obtained by a Monte Carlo simulation. Since the theoretical spectrum can only be obtained for a given geometrical structure, representative major geometries for in-situ measurement (ground surface, concrete wall, radioactive waste drum) and the detectors (HPGe, NaI(Tl), LaBr3(Ce)) were predetermined. Generated virtual spectra were verified in terms of validity and harmonization by gamma spectrometry and energy calibration. As a result, it was confirmed that the energy calibration results including the peaks of the measured spectrum and the peaks of the theoretical spectrum showed differences of less than 1 keV from the actual energies, and that the calculated radioactivity showed a difference within 20% from the actual inputted radioactivity. The verified data were assembled into a database and a program that can generate a virtual spectrum of desired condition was developed.

Chest wall perforator flaps for partial breast reconstruction: Surgical outcomes from a multicenter study

  • Soumian, Soni;Parmeshwar, Rishikesh;Chandarana, Mihir;Marla, Sekhar;Narayanan, Sankaran;Shetty, Geeta
    • Archives of Plastic Surgery
    • /
    • v.47 no.2
    • /
    • pp.153-159
    • /
    • 2020
  • Background Perforator artery flaps based on the branches of intercostal arteries and lateral thoracic artery can be used for reconstruction after breast-conserving surgery (BCS). Although described more than a decade ago, these have not been adopted widely in clinical practice. We report on short-term and long-term surgical outcomes of partial breast reconstruction using chest wall perforator flaps from a prospective multicenter audit. Methods All patients operated for BCS and partial breast reconstruction using intercostal artery perforator or lateral thoracic artery perforator flaps from January 2015 to October 2018 were included in the analysis. Oncoplastic breast surgeons with appropriate level of training performed all tumor excisions and reconstructions as a single-stage procedure. Patient characteristics, treatment details and surgical outcomes were noted. Specific outcomes recorded were margin re-excision and complication rates. Results One hundred and twelve patients underwent the procedure in the given study period. The median age was 54 years. Median specimen weight was 62.5 g and median volume of excision was 121.4 mL. Fifteen patients (13.39%) underwent a margin re-excision for close or positive margins without additional morbidity. One patient required a completion mastectomy. Eight patients (7.14%) had an early complication. None of the patients required a contralateral symmetrization procedure. The results were comparable across the participating centers. Conclusions Chest wall artery perforator-based flaps are an excellent option for lateral and inferior quadrant partial breast reconstructions. The short and long-term surgical outcomes are comparable across sites and can be performed with minimal morbidity. Patient-reported outcome measures need to be studied.

Virtual Bronchoscopy for Diagnosis of Tracheo-Bronchial Disease (기관지질환 진단을 위한 가상내시경)

  • Kim, Do-Yeon;Park, Jong-Won
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.509-514
    • /
    • 2003
  • The virtual bronchoscopy was implemented using chest CT images to visualize inside of tracheo-bronchial wall. The optical endoscopy procedures are invasive, uncomfortable for patients and sedation or anesthesia may be required. Also, they have serious side effects such as perforation, infection and hemorrhage. In order to determine the navigation path, we segmented the tracheo-bronchial wall from the chest CT image. We used the coordinates as a navigation path for virtual camera that were calculated from medial axis transformation. We used the perspective projection and marching cube algorithm to render the surface from volumetric CT image data. The tracheobronchial disease was classified into tracheobronchial stenosis causing from inflammation or lung cancer, bronchiectasis and bronchial cancer. The virtual bronchoscopy is highly recommended as a diagnosis tool with which the specific place of tracheobronchial disease can be identified and the degree of tracheobronchial disease can be measured qualitatively, Also, the virtual bronchoscopy can be used as an education and training tool for endoscopist and radiologist.

A Study on Practical Tool Education for Improving Injection Molding Quality (사출성형품질 개선을 위한 실무금형교육에 관한 연구)

  • Shin, Ju-kyung
    • Journal of Practical Engineering Education
    • /
    • v.8 no.2
    • /
    • pp.121-128
    • /
    • 2016
  • In injection molding process, the appearance quality issue occurs in most injection molded article. One of thermal designs for the mold was performed by increasing the cavity wall temperature with being as uniform as possible in any position. On the basis of the practical evaluation, the cavity wall temperature and finishing machined cavity surface under the optimum processing conditions are the most significant factors to avoid the appearance issue on the plastic part for a good cosmetic quality. Also, the wrong choice of gate type and location can have a considerable effect on the quality of a molded part and it's so important to keep the correct runner balance from each cavity. We've proposed the education training model of the practical tool technology course for the field oriented education to improve practical tool technology ability and optimized tooling design for injection molding quality which can be performed at the workplace substantially.

The Design And Implementation of Robot Training Kit for Java Programming Learning (Java 프로그래밍 학습을 위한 로봇 트레이닝키트의 설계 및 구현)

  • Baek, Jeong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.97-107
    • /
    • 2013
  • The latest programming paradigm has been mostly geared toward object-oriented programming and visual programming based on the object-oriented programming. However, object-oriented programming has a more difficult and complicated concept compared with that of existing structural programming technique; thus it has been very difficult to educate students in the IT-related department. This study designed and implemented a Java robot training kit in which the Java virtual machine is built so that it may enhance the desire and motivation of students for learning the object-oriented programming using the training kit which is possible to attach various input and output devices and to control a robot. The developed Java robot training kit is able to communicate with a computer through the USB interface, and it also enables learners to manufacture a robot for education and to practice applied programming because there is a general purpose input and output port inside the kit, through which diverse input and output devices, DC motor, and servo motor can be operated. Accordingly, facing the IT fusion era, the wall between the academic circles and the major becomes lower and the need for introducing education about creative engineering object-oriented programming language is emerging. At this point, the Java robot training kit developed in this study is expected to make a great commitment in this regard.

SIA-LVC : Scalable Interworking Architecture for Military L-V-C Training Systems Based on Data Centric Middleware (SIA-LVC: 데이터 중심 미들웨어 기반 확장성 있는 국방 L-V-C 훈련체계 연동 아키텍쳐)

  • Kim, Won-Tae;Park, Seung-Min
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.11
    • /
    • pp.393-402
    • /
    • 2016
  • A Military L-V-C system consists of distributed complex systems integrating Live systems working on physical wall-clock time, Virtual systems ruled by virtually pseudo realtime events on a computer, and Constructive systems only depending on the causal relationship between the continuous events. Recently many needs for L-V-C training systems are increasing in order to achieve the maximum training effects with low costs. While theoretical/logical researches or only partially interworking technologies have been proposed, there are few perfect interworking architectures for totally interoperating L-V-C systems in world-wide. In this paper, we design and develop a novel interworking architecture based on data centric middleware for the consistent global time with the same states on the entire L-V-C data and events by means of integrating the heterogeneous distributed middleware standards of each L-V-C system. In addition, simulated L-V-C systems based on real systems will be used for the efficiency and performance of the developed interworking architecture.

A study on transport and plugging of sodium aerosol in leak paths of concrete blocks

  • Sujatha Pavan Narayanam;Soubhadra Sen;Kalpana Kumari;Amit Kumar;Usha Pujala;V. Subramanian;S. Chandrasekharan;R. Preetha;B. Venkatraman
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.132-140
    • /
    • 2024
  • In the event of a severe accident in Sodium Cooled Fast Reactors (SFR), the sodium combustion aerosols along with fission product aerosols would migrate to the environment through leak paths of the Reactor Containment Building (RCB) concrete wall under positive pressure. Understanding the characteristics of sodium aerosol transport through concrete leak paths is important as it governs the environmental source term. In this context, experiments are conducted to study the influence of various parameters like pressure, initial mass concentration, leak path diameter, humidity etc., on the transport and deposition of sodium aerosols in straight leak paths of concrete. The leak paths in concrete specimens are prepared by casting and the diameter of the leak path is measured using thermography technique. Aerosol transport experiments are conducted to measure the transported and plugged aerosol mass in the leak paths and corresponding plugging times. The values of differential pressure, aerosol concentration and relative humidity taken for the study are in the ranges 10-15 kPa, 0.65-3.04 g/m3 and 30-90% respectively. These observations are numerically simulated using 1-Dimensional transport equation. The simulated values are compared with the experimental results and reasonable agreement among them is observed. From the safety assessment view of reactor, the approach presented here is conservative as it is with straight leak paths.

A Study on the Safety Assessment of Water-based Firefighting Training Center using Fire Dynamics Simulation (FDS를 활용한 수소화 훈련장 안전성 평가에 관한 연구)

  • Doyoeng Park;Junho Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.317-323
    • /
    • 2024
  • According to the section A-VI/3 of the International Convention on Standards of Training, Certification and Watchkeeping for Seafarers (STCW), Water-based firefighting training center is mandatory to obtain onboard certificates. This space, being similar to fire situations on ships requires that safety measures be quantified to ensure occupant safety and establish operational standards. For fire safety evaluation, cases were designed based on the presence or absence of smoke control equipment using Pyrosim based on Fire Dynamics Simulation (FDS). Vector analysis was performed to evaluate flow of smoke and heat. Available safe escape time / required safe escpae time (ASET/RSET) analysis was conducted to evaluate safety by comparing the interpreted numerical results through Pathfinder. During safety evaluation of the current operational condition, the appropriateness of the function of each smoke control equipment was numerically and visually indicated. The emergency situation with dust collector stopped was expressed by each evacuation time and safety margin of 111.2 seconds, suggesting that be used as a standard of evacuation time.

Effects of a High-Intensity Interval Physical Exercise Program on Cognition, Physical Performance, and Electroencephalogram Patterns in Korean Elderly People: A Pilot Study

  • Sun Min Lee;Muncheong Choi;Buong-O Chun;Kyunghwa Sun;Ki Sub Kim;Seung Wan Kang;Hong-Sun Song;So Young Moon
    • Dementia and Neurocognitive Disorders
    • /
    • v.21 no.3
    • /
    • pp.93-102
    • /
    • 2022
  • Background and Purpose: The effects of high-intensity interval training (HIIT) interventions on functional brain changes in older adults remain unclear. This preliminary study aimed to explore the effect of physical exercise intervention (PEI), including HIIT, on cognitive function, physical performance, and electroencephalogram patterns in Korean elderly people. Methods: We enrolled six non-dementia participants aged >65 years from a community health center. PEI was conducted at the community health center for 4 weeks, three times/week, and 50 min/day. PEI, including HIIT, involved aerobic exercise, resistance training (muscle strength), flexibility, and balance. Wilcoxon signed rank test was used for data analysis. Results: After the PEI, there was improvement in the 30-second sit-to-stand test result (16.2±7.0 times vs. 24.8±5.5 times, p=0.027), 2-minute stationary march result (98.3±27.2 times vs. 143.7±36.9 times, p=0.027), T-wall response time (104.2±55.8 seconds vs.71.0±19.4 seconds, p=0.028), memory score (89.6±21.6 vs. 111.0±19.1, p=0.028), executive function score (33.3±5.3 vs. 37.0±5.1, p=0.046), and total Literacy Independent Cognitive Assessment score (214.6±30.6 vs. 241.6±22.8, p=0.028). Electroencephalography demonstrated that the beta power in the frontal region was increased, while the theta power in the temporal region was decreased (all p<0.05). Conclusions: Our HIIT PEI program effectively improved cognitive function, physical fitness, and electroencephalographic markers in elderly individuals; thus, it could be beneficial for improving functional brain activity in this population.