• Title/Summary/Keyword: training sets

Search Result 500, Processing Time 0.027 seconds

Application of Bayesian Probability Rule to the Combination of Spectral and Temporal Contextual Information in Land-cover Classification (토지 피복 분류에서 분광 영상정보와 시간 문맥 정보의 결합을 위한 베이지안 확률 규칙의 적용)

  • Lee, Sang-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.445-455
    • /
    • 2011
  • A probabilistic classification framework is presented that can combine temporal contextual information derived from an existing land-cover map in order to improve the classification accuracy of land-cover classes that can not be discriminated well when using spectral information only. The transition probability is computed by using the existing land-cover map and training data, and considered as a priori probability. By combining the a priori probability with conditional probability computed from spectral information via a Bayesian combination rule, the a posteriori probability is finally computed and then the final land-cover types are determined. The method presented in this paper can be adopted to any probabilistic classification algorithms in a simple way, compared with conventional classification methods that require heavy computational loads to incorporate the temporal contextual information. A case study for crop classification using time-series MODIS data sets is carried out to illustrate the applicability of the presented method. The classification accuracies of the land-cover classes, which showed lower classification accuracies when using only spectral information due to the low resolution MODIS data, were much improved by combining the temporal contextual information. It is expected that the presented probabilistic method would be useful both for updating the existing past land-cover maps, and for improving the classification accuracy.

A Study on Classifying Sea Ice of the Summer Arctic Ocean Using Sentinel-1 A/B SAR Data and Deep Learning Models (Sentinel-1 A/B 위성 SAR 자료와 딥러닝 모델을 이용한 여름철 북극해 해빙 분류 연구)

  • Jeon, Hyungyun;Kim, Junwoo;Vadivel, Suresh Krishnan Palanisamy;Kim, Duk-jin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.999-1009
    • /
    • 2019
  • The importance of high-resolution sea ice maps of the Arctic Ocean is increasing due to the possibility of pioneering North Pole Routes and the necessity of precise climate prediction models. In this study,sea ice classification algorithms for two deep learning models were examined using Sentinel-1 A/B SAR data to generate high-resolution sea ice classification maps. Based on current ice charts, three classes (Open Water, First Year Ice, Multi Year Ice) of training data sets were generated by Arctic sea ice and remote sensing experts. Ten sea ice classification algorithms were generated by combing two deep learning models (i.e. Simple CNN and Resnet50) and five cases of input bands including incident angles and thermal noise corrected HV bands. For the ten algorithms, analyses were performed by comparing classification results with ground truth points. A confusion matrix and Cohen's kappa coefficient were produced for the case that showed best result. Furthermore, the classification result with the Maximum Likelihood Classifier that has been traditionally employed to classify sea ice. In conclusion, the Convolutional Neural Network case, which has two convolution layers and two max pooling layers, with HV and incident angle input bands shows classification accuracy of 96.66%, and Cohen's kappa coefficient of 0.9499. All deep learning cases shows better classification accuracy than the classification result of the Maximum Likelihood Classifier.

Comparison of Partial Least Squares and Support Vector Machine for the Flash Point Prediction of Organic Compounds (유기물의 인화점 예측을 위한 부분최소자승법과 SVM의 비교)

  • Lee, Chang Jun;Ko, Jae Wook;Lee, Gibaek
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.717-724
    • /
    • 2010
  • The flash point is one of the most important physical properties used to determine the potential for fire and explosion hazards of flammable liquids. Despite the needs of the experimental flash point data for the design and construction of chemical plants, there is often a significant gap between the demands for the data and their availability. This study have built and compared two models of partial least squares(PLS) and support vector machine(SVM) to predict the experimental flash points of 893 organic compounds out of DIPPR 801. As the independent variables of the models, 65 functional groups were chosen based on the group contribution method that was oriented from the assumption that each fragment of a molecule contributes a certain amount to the value of its physical property, and the logarithm of molecular weight was added. The prediction errors calculated from cross-validation were employed to determine the optimal parameters of two models. And, an optimization technique should be used to get three parameters of SVM model. This work adopted particle swarm optimization that is one of heuristic optimization methods. As the selection of training data can affect the prediction performance, 100 data sets of randomly selected data were generated and tested. The PLS and SVM results of the average absolute errors for the whole data range from 13.86 K to 14.55 K and 7.44 K to 10.26 K, respectively, indicating that the predictive ability of the SVM is much superior than PLS.

Innovation and Creativity in Business Practices

  • Venkatesh, Bharti;Qureshi, Shazia
    • Journal of Distribution Science
    • /
    • v.10 no.4
    • /
    • pp.7-11
    • /
    • 2012
  • "Great things in business are never done by one person; they're done by a team of people." By Steve Jobs, 2003. As define by Linda Naiam - Creativity is the act of turning new and imaginative ideas into reality. Creativity involves two processes: thinking, then producing. Innovation is the production or implementation of an idea. If you have ideas, but don't act on them, you are imaginative but not creative. So in order to maintain the pace with the changing business scenario and coping with the competition Innovation and Creativity is considered a mandatory tool for a business to exist and grow in market. Whether a company is Employee centric or Business centric Innovation and creativity has to have its space in order to keep a business ahead of others in the Market. Also it's not just the competition which has led to the Innovation and Creativity in Business practices it's also the demanding chunk of consumers and customers who are aware and prefer maximum choices before making a final deal. Another reason as to why there is a change in business practices is the globalization of businesses where you need to rope in the Innovative ideas to launch and sustain in new market. There had been tremendous shift in business practices but to give a room to innovative ideas and implement that creativity need ample to space and vision along with an attitude where in you can resist for getting an immediate results from innovative business practices. Corporate Creativity is characterized by the ability to perceive the world in new ways, to find hidden patterns, to make connections between seemingly unrelated phenomena, and to generate solutions. Generating fresh solutions to problems, and the ability to create new products, processes or services for a changing market, are part of the intellectual capital that give a company its competitive edge. Creativity is a crucial part of the innovation equation. The innovation and creativity is not limited to any area of business, it can start from your waiting lounge to your board room meeting depending upon how the things are perceived and implemented for the betterment of people and business. The purpose of this research is to understand the latest creative business approaches and practices that organizations are following to be different from their competitors. Also this shift from generic business practices to the Innovative and Creative approach seems to take the business into new world. This approaches means starting from the bottom of the Pyramid and finally touching the pinnacles in Innovation and creativity. The paper will discuss on the various areas of business where in innovative approaches can be roped in and sets new bench mark altogether in the business arena.

  • PDF

Pattern Recognition of the Herbal Drug, Magnoliae Flos According to their Essential Oil Components

  • Jeong, Eun-Sook;Choi, Kyu-Yeol;Kim, Sun-Chun;Son, In-Seop;Cho, Hwang-Eui;Ahn, Su-Youn;Woo, Mi-Hee;Hong, Jin-Tae;Moon, Dong-Cheul
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1121-1126
    • /
    • 2009
  • This paper describes a pattern recognition method of Magnoliae flos based on a gas chromatographic/mass spectrometric (GC/MS) analysis of the essential oil components. The botanical drug is mainly comprised of the four magnolia species (M. denudata, M. biondii, M. kobus, and M. liliflora) in Korea, although some other species are also being dealt with the drug. The GC/MS separation of the volatile components, which was extracted by the simultaneous distillation and extraction (SDE), was performed on a carbowax column (supelcowax 10; 30 m{\time}0.25 mm{\time}0.25{\mu}m$) using temperature programming. Variance in the retention times for all peaks of interests was within RSD 2% for repeated analyses (n = 9). Of the 74 essential oil components identified from the magnolia species, approximately 10 major components, which is $\alpha$-pinene, $\beta$-pinene, sabinene, myrcene, d-limonene, eucarlyptol (1,8-cineol), $\gamma$-terpinene, p-cymene, linalool, $\alpha$-terpineol, were commonly present in the four species. For statistical analysis, the original dataset was reduced to the 13 variables by Fisher criterion and factor analysis (FA). The essential oil patterns were processed by means of the multivariate statistical analysis including hierarchical cluster analysis (HCA), principal component analysis (PCA) and discriminant analysis (DA). All samples were divided into four groups with three principal components by PCA and according to the plant origins by HCA. Thirty-three samples (23 training sets and 10 test samples to be assessed) were correctly classified into the four groups predicted by PCA. This method would provide a practical strategy for assessing the authenticity or quality of the well-known herbal drug, Magnoliae flos.

Development and Application of a Big Data Platform for Education Longitudinal Study Analysis (교육종단연구 분석을 위한 빅데이터 플랫폼 개발 및 적용)

  • Park, Jung;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.11-27
    • /
    • 2020
  • In this paper, we developed a big data platform to store, process, and analyze effectively on such education longitudinal study data. And it was applied to the Seoul Education Longitudinal Study(SELS) to confirm its usefulness. The developed platform consists of data preprocessing unit and data analysis unit. The data preprocessing unit 1) masking, 2) converts each item into a factor 3) normalizes / creates dummy variables 4) data derivation, and 5) data warehousing. The data analysis unit consists of OLAP and data mining(DM). In the multidimensional analysis, OLAP is performed after selecting a measure and designing a schema. The DM process involves variable selection, research model selection, data modification, parameter tuning, model training, model evaluation, and interpretation of the results. The data warehouse created through the preprocessing process on this platform can be shared by various researchers, and the continuous accumulation of data sets makes further analysis easier for subsequent researchers. In addition, policy-makers can access the SELS data warehouse directly and analyze it online through multi-dimensional analysis, enabling scientific decision making. To prove the usefulness of the developed platform, SELS data was built on the platform and OLAP and DM were performed by selecting the mathematics academic achievement as a measure, and various factors affecting the measurements were analyzed using DM techniques. This enabled us to quickly and effectively derive implications for data-based education policies.

Extracting Minimized Feature Input And Fuzzy Rules Using A Fuzzy Neural Network And Non-Overlap Area Distribution Measurement Method (퍼지신경망과 비중복면적 분산 측정법을 이용한 최소의 특징입력 및 퍼지규칙의 추출)

  • Lim Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.599-604
    • /
    • 2005
  • This paper presents fuzzy rules to predict diagnosis of Wisconsin breast cancer with minimized number of feature in put using the neural network with weighted fuzzy membership functions (NEWFM) and the non-overlap area distribution measurement method. NEWFM is capable of self-adapting weighted membership functions from the given the Wisconsin breast cancer clinical training data. n set of small, medium, and large weighted triangular membership functions in a hyperbox are used for representing n set of featured input. The membership functions are randomly distributed and weighted initially, and then their positions and weights are adjusted during learning. After learning, prediction rules are extracted directly from n set of enhanced bounded sums of n set of small, medium, and large weighted fuzzy membership functions. Then, the non-overlap area distribution measurement method is applied to select important features by deleting less important features. Two sets of prediction rules extracted from NEWFM using the selected 4 input features out of 9 features outperform to the current published results in number of set of rules, number of input features, and accuracy with 99.71%.

A Comparative Experiment on Dimensional Reduction Methods Applicable for Dissimilarity-Based Classifications (비유사도-기반 분류를 위한 차원 축소방법의 비교 실험)

  • Kim, Sang-Woon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.59-66
    • /
    • 2016
  • This paper presents an empirical evaluation on dimensionality reduction strategies by which dissimilarity-based classifications (DBC) can be implemented efficiently. In DBC, classification is not based on feature measurements of individual objects (a set of attributes), but rather on a suitable dissimilarity measure among the individual objects (pair-wise object comparisons). One problem of DBC is the high dimensionality of the dissimilarity space when a lots of objects are treated. To address this issue, two kinds of solutions have been proposed in the literature: prototype selection (PS)-based methods and dimension reduction (DR)-based methods. In this paper, instead of utilizing the PS-based or DR-based methods, a way of performing DBC in Eigen spaces (ES) is considered and empirically compared. In ES-based DBC, classifications are performed as follows: first, a set of principal eigenvectors is extracted from the training data set using a principal component analysis; second, an Eigen space is expanded using a subset of the extracted and selected Eigen vectors; third, after measuring distances among the projected objects in the Eigen space using $l_p$-norms as the dissimilarity, classification is performed. The experimental results, which are obtained using the nearest neighbor rule with artificial and real-life benchmark data sets, demonstrate that when the dimensionality of the Eigen spaces has been selected appropriately, compared to the PS-based and DR-based methods, the performance of the ES-based DBC can be improved in terms of the classification accuracy.

Application of recurrent neural network for inflow prediction into multi-purpose dam basin (다목적댐 유입량 예측을 위한 Recurrent Neural Network 모형의 적용 및 평가)

  • Park, Myung Ky;Yoon, Yung Suk;Lee, Hyun Ho;Kim, Ju Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1217-1227
    • /
    • 2018
  • This paper aims to evaluate the applicability of dam inflow prediction model using recurrent neural network theory. To achieve this goal, the Artificial Neural Network (ANN) model and the Elman Recurrent Neural Network(RNN) model were applied to hydro-meteorological data sets for the Soyanggang dam and the Chungju dam basin during dam operation period. For the model training, inflow, rainfall, temperature, sunshine duration, wind speed were used as input data and daily inflow of dam for 10 days were used for output data. The verification was carried out through dam inflow prediction between July, 2016 and June, 2018. The results showed that there was no significant difference in prediction performance between ANN model and the Elman RNN model in the Soyanggang dam basin but the prediction results of the Elman RNN model are comparatively superior to those of the ANN model in the Chungju dam basin. Consequently, the Elman RNN prediction performance is expected to be similar to or better than the ANN model. The prediction performance of Elman RNN was notable during the low dam inflow period. The performance of the multiple hidden layer structure of Elman RNN looks more effective in prediction than that of a single hidden layer structure.

Endovascular Treatments Performed Collaboratively by the Society of Korean Endovascular Neurosurgeons Members : A Nationwide Multicenter Survey

  • Kim, Tae Gon;Kwon, Oki;Shin, Yong Sam;Sung, Jae Hoon;Koh, Jun Seok;Kim, Bum-Tae
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.5
    • /
    • pp.502-518
    • /
    • 2019
  • Objective : Since less invasive endovascular treatment was introduced to South Korea in 1994, a considerable proportion of endovascular treatments have been performed by neuroradiology doctors, and endovascular treatments by vascular neurosurgeons have recently increased. However, few specific statistics are known regarding how many endovascular treatments are performed by neurosurgeons. Thus, authors compared endovascular treatments collaboratively performed by vascular neurosurgeons with all cases throughout South Korea from 2013 to 2017 to elucidate the role of neurosurgeons in the field of endovascular treatment in South Korea. Methods : The Society of Korean Endovascular Neurosurgeons (SKEN) has issued annual reports every year since 2014. These reports cover statistics on endovascular treatments collaboratively or individually performed by SKEN members from 2013 to 2017. The data was requested and collected from vascular neurosurgeons in various hospitals. The study involved 77 hospitals in its first year, and 100 in its last. National statistics on endovascular treatment from all over South Korea were obtained from the Healthcare Bigdata Hub website of the Health Insurance Review & Assessment Service based on the Electronic Data Interchange (EDI) codes (in the case of intra-arterial (IA) thrombolysis, however, statistics were based on a combination of the EDI and I63 codes, a cerebral infarction disease code) from 2013 to 2017. These two data sets were directly compared and the ratios were obtained. Results : Regionally, during the entire study period, endovascular treatments by SKEN members were most common in Gyeonggido, followed by Seoul and Busan. Among the endovascular treatments, conventional cerebral angiography was the most common, followed by cerebral aneurysmal coiling, endovascular treatments for ischemic stroke, and finally endovascular treatments for vascular malformation and tumor embolization. The number of endovascular treatments performed by SKEN members increased every year. Conclusion : The SKEN members have been responsible for the major role of endovascular treatments in South Korea for the recent 5 years. This was achieved through the perseverance of senior members who started out in the midst of hardship, the establishment of standards for the training/certification of endovascular neurosurgery, and the enthusiasm of current SKEN members who followed. To provide better treatment to patients, we will have to make further progress in SKEN.