• Title/Summary/Keyword: training parameters

Search Result 1,021, Processing Time 0.03 seconds

A Study on Mouth Features Detection in Face using HMM (HMM을 이용한 얼굴에서 입 특징점 검출에 관한 연구)

  • Kim, Hea-Chel;Jung, Chan-Ju;Kwag, Jong-Se;Kim, Mun-Hwan;Bae, Chul-Soo;Ra, Snag-Dong
    • Annual Conference of KIPS
    • /
    • 2002.04a
    • /
    • pp.647-650
    • /
    • 2002
  • The human faces do not have distinct features unlike other general objects. In general the features of eyes, nose and mouth which are first recognized when human being see the face are defined. These features have different characteristics depending on different human face. In this paper, We propose a face recognition algorithm using the hidden Markov model(HMM). In the preprocessing stage, we find edges of a face using the locally adaptive threshold scheme and extract features based on generic knowledge of a face, then construct a database with extracted features. In training stage, we generate HMM parameters for each person by using the forward-backward algorithm. In the recognition stage, we apply probability values calculated by the HMM to input data. Then the input face is recognized by the euclidean distance of face feature vector and the cross-correlation between the input image and the database image. Computer simulation shows that the proposed HMM algorithm gives higher recognition rate compared with conventional face recognition algorithms.

  • PDF

A Study on Auto-Classification of Acoustic Emission Signals Using Wavelet Transform and Neural Network (웨이블렛 변환과 신경망을 이용한 음향방출신호의 자동분류에 관한연구)

  • Park, Jae-Jun;Kim, Meyoun-Soo;Oh, Seung-Heon;Kang, Tae-Rim;Kim, Sung-Hong;Beak, Kwan-Hyun;Oh, Il-Duck;Song, Young-Chul;Kwon, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1880-1884
    • /
    • 2000
  • The discrete wavelet transform is utilized as preprocessing of Neural Network(NN) to identify aging state of internal partial discharge in transformer. The discrete traveler transform is used to produce wavelet coefficients which are used for Classification. The statistical parameters (maximum of wavelet coefficients, average value, dispersion, skewness, kurtosis) using the wavelet coefficients are input into an back-propagation neural network. The neurons whose weights have obtained through Result of Cross-Validation. The Neural Network learning stops either when the error rate achieves an appropriate minimum or when the learning time overcomes a constant value. The networks, after training, can decide if the test signal is Early Aging State or Last Aging State or normal state.

  • PDF

Sensorless Speed Control of Induction Motor by Neural Network (신경회로망을 이용한 유도전동기의 센서리스 속도제어)

  • 김종수;김덕기;오세진;이성근;유희한;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.695-704
    • /
    • 2002
  • Generally, induction motor controller requires rotor speed sensor for commutation and current control, but it increases cost and size of the motor. So in these days, various researches including speed sensorless vector control have been reported and some of them have been put to practical use. In this paper a new speed estimation method using neural networks is proposed. The optimal neural network structure was tracked down by trial and error, and it was found that the 8-16-1 neural network has given correct results for the instantaneous rotor speed. Supervised learning methods, through which the neural network is trained to learn the input/output pattern presented, are typically used. The back-propagation technique is used to adjust the neural network weights during training. The rotor speed is calculated by weights and eight inputs to the neural network. Also, the proposed method has advantages such as the independency on machine parameters, the insensitivity to the load condition, and the stability in the low speed operation.

Design Optimization of Three-Dimensional Channel Roughened by Oblique Ribs Using Response Surface Method (반응면 기법을 이용한 경사진 리브가 부착된 삼차원 열전달유로의 최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.879-886
    • /
    • 2004
  • A numerical optimization has been carried out to determine the shape of the three-dimensional channel with oblique ribs attached on both walls to enhance turbulent heat transfer. The response surface based optimization is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer. Shear stress transport (SST) turbulence model is used as a turbulence closure. Numerical results fur heat transfer rate show good agreements with experimental data. four dimensionless variables such as, rib pitch-to-rib height ratio, rib height-to-channel height ratio, streamwise rib distance on opposite wall to rib pitch ratio, and the attack angle of the rib are chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related coefficients with a weighting factor. D-optimal method is used to determine the training points as a means of design of experiment. Sensitivity of the objective parameters to each design variable has been analyzed. And, optimal values of the design variables have been obtained in a range of the weighting factor.

Modeling the Properties of the PECVD Silicon Dioxide Films Using Polynomial Neural Networks

  • Han, Seung-Soo;Song, Kyung-Bin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.195-200
    • /
    • 1998
  • Since the neural network was introduced, significant progress has been made on data handling and learning algorithms. Currently, the most popular learning algorithm in neural network training is feed forward error back-propagation (FFEBP) algorithm. Aside from the success of the FFEBP algorithm, polynomial neural networks (PNN) learning has been proposed as a new learning method. The PNN learning is a self-organizing process designed to determine an appropriate set of Ivakhnenko polynomials that allow the activation of many neurons to achieve a desired state of activation that mimics a given set of sampled patterns. These neurons are interconnected in such a way that the knowledge is stored in Ivakhnenko coefficients. In this paper, the PNN model has been developed using the plasma enhanced chemical vapor deposition (PECVD) experimental data. To characterize the PECVD process using PNN, SiO$_2$films deposited under varying conditions were analyzed using fractional factorial experimental design with three center points. Parameters varied in these experiments included substrate temperature, pressure, RF power, silane flow rate and nitrous oxide flow rate. Approximately five microns of SiO$_2$were deposited on (100) silicon wafers in a Plasma-Therm 700 series PECVD system at 13.56 MHz.

  • PDF

Identification of Fuzzy Systems by means of the Extended GMDH Algorithm

  • Park, Chun-Seong;Park, Jae-Ho;Oh, Sung-Kwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.254-259
    • /
    • 1998
  • A new design methology is proposed to identify the structure and parameters of fuzzy model using PNN and a fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Handling), and uses several types of polynomials such as linear, quadratic and cubic besides the biquadratic polynomial used in the GMDH. The FPNN(Fuzzy Polynomial Neural Networks) algorithm uses PNN(Polynomial Neural networks) structure and a fuzzy inference method. In the fuzzy inference method, the simplified and regression polynomial inference methods are used. Here a regression polynomial inference is based on consequence of fuzzy rules with a polynomial equations such as linear, quadratic and cubic equation. Each node of the FPNN is defined as fuzzy rules and its structure is a kind of neuro-fuzzy architecture. In this paper, we will consider a model that combines the advantage of both FPNN and PNN. Also we use the training and testing data set to obtain a balance between the approximation and generalization of process model. Several numerical examples are used to evaluate the performance of the our proposed model.

  • PDF

Determination of an Optimal Sentence Segmentation Position using Statistical Information and Genetic Learning (통계 정보와 유전자 학습에 의한 최적의 문장 분할 위치 결정)

  • 김성동;김영택
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.10
    • /
    • pp.38-47
    • /
    • 1998
  • The syntactic analysis for the practical machine translation should be able to analyze a long sentence, but the long sentence analysis is a critical problem because of its high analysis complexity. In this paper a sentence segmentation method is proposed for an efficient analysis of a long sentence and the method of determining optimal sentence segmentation positions using statistical information and genetic learning is introduced. It consists of two modules: (1) decomposable position determination which uses lexical contextual constraints acquired from a training data tagged with segmentation positions. (2) segmentation position selection by the selection function of which the weights of parameters are determined through genetic learning, which selects safe segmentation positions with enhancing the analysis efficiency as much as possible. The safe segmentation by the proposed sentence segmentation method and the efficiency enhancement of the analysis are presented through experiments.

  • PDF

Effects of upstream two-dimensional hills on design wind loads: A computational approach

  • Bitsuamlak, G.;Stathopoulos, T.;Bedard, C.
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.37-58
    • /
    • 2006
  • The paper describes a study about effects of upstream hills on design wind loads using two mathematical approaches: Computational Fluid Dynamics (CFD) and Artificial Neural Network (NN for short). For this purpose CFD and NN tools have been developed using an object-oriented approach and C++ programming language. The CFD tool consists of solving the Reynolds time-averaged Navier-Stokes equations and $k-{\varepsilon}$ turbulence model using body-fitted nearly-orthogonal coordinate system. Subsequently, design wind load parameters such as speed-up ratio values have been generated for a wide spectrum of two-dimensional hill geometries that includes isolated and multiple steep and shallow hills. Ground roughness effect has also been considered. Such CFD solutions, however, normally require among other things ample computational time, background knowledge and high-capacity hardware. To assist the enduser, an easier, faster and more inexpensive NN model trained with the CFD-generated data is proposed in this paper. Prior to using the CFD data for training purposes, extensive validation work has been carried out by comparing with boundary layer wind tunnel (BLWT) data. The CFD trained NN (CFD-NN) has produced speed-up ratio values for cases such as multiple hills that are not covered by wind design standards such as the Commentaries of the National Building Code of Canada (1995). The CFD-NN results compare well with BLWT data available in literature and the proposed approach requires fewer resources compared to running BLWT experiments.

Implementation of Virtual Realily Immersion System using Motion Vectors (모션벡터를 이용한 가상현실 체험 시스템의 구현)

  • 서정만;정순기
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.3
    • /
    • pp.87-93
    • /
    • 2003
  • The purpose of this research is to develop a virtual reality system which enables to actually experience the virtual reality through the visual sense of human. TSS was applied in tracing the movement of moving picture in this research. By applying TSS, it was possible to calculate multiple motion vectors from moving picture, and then camera's motion parameters were obtained by utilizing the relationship between the motion vectors. For the purpose of experiencing the virtual reality by synchronizing the camera's accelerated velocity and the simulator's movements, the relationship between the value of camera's accelerated velocity and the simulator's movements was analyzed and its result was applied to the neutral network training. It has been proved that the proposed virtual reality immersion system in this dissertation can dynamically control the movements of moving picture and can also operate the simulator quite similarly to the real movements of moving picture.

  • PDF

A Study on a neural-Net Based Call admission Control Using Fuzzy Pattern Estimator for ATM Networks (ATM망에서 퍼지 패턴 추정기를 이용한 신경망 호 수락제어에 관한 연구)

  • 이진이;이종찬;이종석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.173-179
    • /
    • 1998
  • This paper proposes a new call admission control scheme utilizing an inverse fuzzy vector quantizer(IFVQ) and neural net, which combines benefits of IFVQ and flexibilities of FCM(Fuzzy-C-Menas) arithmatics, to decide whether a requested call that is not trained in learning phase to be connected or not. The system generates the estimated traffic pattern of the cell stream of a new call, using feasible/infeasible patterns in codebook, fuzzy membership values that represent the degree to which each pattern of codebook matches input pattern, and FCM arithmatics. The input to the NN is the vector consisted of traffic parameters which is the means and variances of the number of cells arriving inthe interval. After training(using error back propagation algorithm), when the NN is used for decision making, the decision as to whether to accept or reject a new call depends on whether the output is greater or less then decision threshold(+0.5). This method is a new technique for call admi sion control using the membership values as traffic parameter which declared to CAC at the call set up stage, and is valid for a very general traffic model in which the calls of a stream can belong to an unlimited number of traffic classes. Through the simmulation. it is founded the performance of the suggested method outforms compared to the conventional NN method.

  • PDF