• Title/Summary/Keyword: training parameters

Search Result 1,021, Processing Time 0.035 seconds

A Review on Advanced Methodologies to Identify the Breast Cancer Classification using the Deep Learning Techniques

  • Bandaru, Satish Babu;Babu, G. Rama Mohan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.420-426
    • /
    • 2022
  • Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.

A three-stage deep-learning-based method for crack detection of high-resolution steel box girder image

  • Meng, Shiqiao;Gao, Zhiyuan;Zhou, Ying;He, Bin;Kong, Qingzhao
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.29-39
    • /
    • 2022
  • Crack detection plays an important role in the maintenance and protection of steel box girder of bridges. However, since the cracks only occupy an extremely small region of the high-resolution images captured from actual conditions, the existing methods cannot deal with this kind of image effectively. To solve this problem, this paper proposed a novel three-stage method based on deep learning technology and morphology operations. The training set and test set used in this paper are composed of 360 images (4928 × 3264 pixels) in steel girder box. The first stage of the proposed model converted high-resolution images into sub-images by using patch-based method and located the region of cracks by CBAM ResNet-50 model. The Recall reaches 0.95 on the test set. The second stage of our method uses the Attention U-Net model to get the accurate geometric edges of cracks based on results in the first stage. The IoU of the segmentation model implemented in this stage attains 0.48. In the third stage of the model, we remove the wrong-predicted isolated points in the predicted results through dilate operation and outlier elimination algorithm. The IoU of test set ascends to 0.70 after this stage. Ablation experiments are conducted to optimize the parameters and further promote the accuracy of the proposed method. The result shows that: (1) the best patch size of sub-images is 1024 × 1024. (2) the CBAM ResNet-50 and the Attention U-Net achieved the best results in the first and the second stage, respectively. (3) Pre-training the model of the first two stages can improve the IoU by 2.9%. In general, our method is of great significance for crack detection.

Multiple effects of nano-silica on the pseudo-strain-hardening behavior of fiber-reinforced cementitious composites

  • Hossein Karimpour;Moosa Mazloom
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.467-484
    • /
    • 2023
  • Despite the significant features of fiber-reinforced cementitious composites (FRCCs), including better mechanical, fractural, and durability performance, their high content of cement has restricted their use in the construction industry. Although ground granulated blast furnace slag (GGBFS) is considered the main supplementary cementitious material, its slow pozzolanic reaction stands against its application. The addition of nano-sized mineral modifiers, including nano-silica (NS), is an alternative to address the drawbacks of using GGBFS. The main object of this empirical and numerical research is to examine the effect of NS on the strain-hardening behavior of cementitious composites; ten mixes were designed, and five levels of NS were considered. This study proposes a new method, using a four-point bending test to assess the use of nano-silica (NS) on the flexural behavior, first cracking strength, fracture energy, and micromechanical parameters including interfacial friction bond strength and maximum bridging stress. Digital image correlation (DIC) was used for monitoring the initiation and propagation of the cracks. In addition, to attain a deep comprehension of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. It was discovered that using nano-silica (NS) in cementitious materials results in an enhancement in the matrix toughness, which prevents multiple cracking and, therefore, strain-hardening. In addition, adding NS enhanced the interfacial transition zone between matrix and fiber, leading to a higher interfacial friction bond strength, which helps multiple cracking in the composite due to the hydrophobic nature of polypropylene (PP) fibers. The findings of this research provide insight into finding the optimum percent of NS in which both ductility and high tensile strength of the composites would be satisfied. As a concluding remark, a new criterion is proposed, showing that the optimum value of nano-silica is 2%. The findings and proposed method of this study can facilitate the design and utilization of green cementitious composites in structures.

In-depth exploration of machine learning algorithms for predicting sidewall displacement in underground caverns

  • Hanan Samadi;Abed Alanazi;Sabih Hashim Muhodir;Shtwai Alsubai;Abdullah Alqahtani;Mehrez Marzougui
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.307-321
    • /
    • 2024
  • This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.

Impact of Smut (Sporisorium scitamineum) on Sugarcane's Above-Ground Growth and the Determinants of the Disease Intensity in the Ethiopian Sugarcane Plantations

  • Samuel Tegene;Habtamu Terefe;Esayas Tena
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.34-49
    • /
    • 2024
  • The development of sustainable smut management techniques requires an understanding of the impacts of smut on sugarcane growth and the relationships between smut intensity and meteorological variables, varieties, and crop types. Thus, assessments were made with the objectives to 1) determine the effect of smut on the above-ground growth of sugarcane, and 2) quantify the association of smut with weather variables, varieties and crop types. The effect of smut on above-ground growth was assessed in six fields planted with NCo 334 (wider coverage) having 6 months of age in Fincha and Metehara fields in 2021. Data on above-ground growth were taken from 20 randomly selected smut-affected and healthy stools from each field. Besides, 6 years' data (2015 to 2021) on the numbers of smut-affected stools and smut whips of 79 fields were collected. Furthermore, 10 years' (2011 to 2021) weather data were acquired from the sugar plantations. The results demonstrated reduction in the above-ground growth of sugarcane in the range of 18.39% and 73.42% due to smut. In addition, weather variables explained about 68.48% and 66.58% of the variability in the number of smut-affected stools and whips respectively. Smut intensity increased with crop types for susceptible varieties. The tight association between the smut epidemic and crop types, varieties, and weather, implied that these parameters must be carefully considered in management decisions. Continuous monitoring of smut disease, meteorological variables, varieties, and crop types in all the sugarcane plantations could be done as a part of integrated smut management in the future.

The development of four efficient optimal neural network methods in forecasting shallow foundation's bearing capacity

  • Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.151-168
    • /
    • 2024
  • This research aimed to appraise the effectiveness of four optimization approaches - cuckoo optimization algorithm (COA), multi-verse optimization (MVO), particle swarm optimization (PSO), and teaching-learning-based optimization (TLBO) - that were enhanced with an artificial neural network (ANN) in predicting the bearing capacity of shallow foundations located on cohesionless soils. The study utilized a database of 97 laboratory experiments, with 68 experiments for training data sets and 29 for testing data sets. The ANN algorithms were optimized by adjusting various variables, such as population size and number of neurons in each hidden layer, through trial-and-error techniques. Input parameters used for analysis included width, depth, geometry, unit weight, and angle of shearing resistance. After performing sensitivity analysis, it was determined that the optimized architecture for the ANN structure was 5×5×1. The study found that all four models demonstrated exceptional prediction performance: COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP. It is worth noting that the MVO-MLP model exhibited superior accuracy in generating network outputs for predicting measured values compared to the other models. The training data sets showed R2 and RMSE values of (0.07184 and 0.9819), (0.04536 and 0.9928), (0.09194 and 0.9702), and (0.04714 and 0.9923) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively. Similarly, the testing data sets produced R2 and RMSE values of (0.08126 and 0.07218), (0.07218 and 0.9814), (0.10827 and 0.95764), and (0.09886 and 0.96481) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively.

Subfertility in Males: An Important Cause of Bull Disposal in Bovines

  • Mukhopadhyay, C.S.;Gupta, A.K.;Yadav, B.R.;Khate, K.;Raina, V.S.;Mohanty, T.K.;Dubey, P.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.450-455
    • /
    • 2010
  • The study had two objectives, namely, to estimate the andrological disorders leading to disposal of Karan Fries (KF), Sahiwal cattle and Murrah buffalo bulls and to study the effect of various factors (species/breeds, season of birth and period of birth) on male reproductive parameters. Records on occurrence of subfertility problems and disposal pattern of bulls maintained at the National Dairy Research Institute herd were collected for 15 years (1991 to 2005). Percentage of bulls producing freezable semen was less in the crossbred cattle (58.46%) as compared to Sahiwal (81.69%) and Murrah bulls (81.05%). Various subfertility traits like poor libido and unacceptable seminal profile were found to be the significant reasons (p<0.01) for culling of the breeding bulls. Inadequate sex drive was the main contributing factor for bull disposal in Sahiwal (22.55%) and Murrah bulls (15.12%) whereas poor semen quality and freezability were most frequently observed in KF bulls (24.29 and 7.29 percent, respectively). Least squares analyses of different male reproductive parameters showed that species/breeds had significant effect (p<0.05) on all traits except for frozen semen production periods (FSPP). Periods of birth were significantly different (p<0.05) for all traits except for semen volume. Age at first semen collection (AFSC), age at first semen freezing (AFSF) and age at disposal (AD) were highest in Murrah, while frozen semen production period (FSPP) and semen production period (SPP) were highest in KF and lowest in Sahiwal. The age at first semen donation and breeding period could be reduced by introducing the bulls to training at an early age. These results revealed a declining trend in AFSC, AFSF, FSPP, SPP and AD, thereby indicating an improvement in reproductive performance over the years. The age at first semen donation in bovines can be reduced by introducing the young male calves to training at an early age, which could increase the dosage of semen obtained from each male.

A Study on Classification of Variant Malware Family Based on ResNet-Variational AutoEncoder (ResNet-Variational AutoEncoder기반 변종 악성코드 패밀리 분류 연구)

  • Lee, Young-jeon;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • Traditionally, most malicious codes have been analyzed using feature information extracted by domain experts. However, this feature-based analysis method depends on the analyst's capabilities and has limitations in detecting variant malicious codes that have modified existing malicious codes. In this study, we propose a ResNet-Variational AutoEncder-based variant malware classification method that can classify a family of variant malware without domain expert intervention. The Variational AutoEncoder network has the characteristics of creating new data within a normal distribution and understanding the characteristics of the data well in the learning process of training data provided as input values. In this study, important features of malicious code could be extracted by extracting latent variables in the learning process of Variational AutoEncoder. In addition, transfer learning was performed to better learn the characteristics of the training data and increase the efficiency of learning. The learning parameters of the ResNet-152 model pre-trained with the ImageNet Dataset were transferred to the learning parameters of the Encoder Network. The ResNet-Variational AutoEncoder that performed transfer learning showed higher performance than the existing Variational AutoEncoder and provided learning efficiency. Meanwhile, an ensemble model, Stacking Classifier, was used as a method for classifying variant malicious codes. As a result of learning the Stacking Classifier based on the characteristic data of the variant malware extracted by the Encoder Network of the ResNet-VAE model, an accuracy of 98.66% and an F1-Score of 98.68 were obtained.

The gene expression programming method to generate an equation to estimate fracture toughness of reinforced concrete

  • Ahmadreza Khodayari;Danial Fakhri;Adil Hussein, Mohammed;Ibrahim Albaijan;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Ahmed Babeker Elhag;Shima Rashidi
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.163-177
    • /
    • 2023
  • Complex and intricate preparation techniques, the imperative for utmost precision and sensitivity in instrumentation, premature sample failure, and fragile specimens collectively contribute to the arduous task of measuring the fracture toughness of concrete in the laboratory. The objective of this research is to introduce and refine an equation based on the gene expression programming (GEP) method to calculate the fracture toughness of reinforced concrete, thereby minimizing the need for costly and time-consuming laboratory experiments. To accomplish this, various types of reinforced concrete, each incorporating distinct ratios of fibers and additives, were subjected to diverse loading angles relative to the initial crack (α) in order to ascertain the effective fracture toughness (Keff) of 660 samples utilizing the central straight notched Brazilian disc (CSNBD) test. Within the datasets, six pivotal input factors influencing the Keff of concrete, namely sample type (ST), diameter (D), thickness (t), length (L), force (F), and α, were taken into account. The ST and α parameters represent crucial inputs in the model presented in this study, marking the first instance that their influence has been examined via the CSNBD test. Of the 660 datasets, 460 were utilized for training purposes, while 100 each were allotted for testing and validation of the model. The GEP model was fine-tuned based on the training datasets, and its efficacy was evaluated using the separate test and validation datasets. In subsequent stages, the GEP model was optimized, yielding the most robust models. Ultimately, an equation was derived by averaging the most exemplary models, providing a means to predict the Keff parameter. This averaged equation exhibited exceptional proficiency in predicting the Keff of concrete. The significance of this work lies in the possibility of obtaining the Keff parameter without investing copious amounts of time and resources into the CSNBD test, simply by inputting the relevant parameters into the equation derived for diverse samples of reinforced concrete subject to varied loading angles.

A Study on Fine-Tuning and Transfer Learning to Construct Binary Sentiment Classification Model in Korean Text (한글 텍스트 감정 이진 분류 모델 생성을 위한 미세 조정과 전이학습에 관한 연구)

  • JongSoo Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.15-30
    • /
    • 2023
  • Recently, generative models based on the Transformer architecture, such as ChatGPT, have been gaining significant attention. The Transformer architecture has been applied to various neural network models, including Google's BERT(Bidirectional Encoder Representations from Transformers) sentence generation model. In this paper, a method is proposed to create a text binary classification model for determining whether a comment on Korean movie review is positive or negative. To accomplish this, a pre-trained multilingual BERT sentence generation model is fine-tuned and transfer learned using a new Korean training dataset. To achieve this, a pre-trained BERT-Base model for multilingual sentence generation with 104 languages, 12 layers, 768 hidden, 12 attention heads, and 110M parameters is used. To change the pre-trained BERT-Base model into a text classification model, the input and output layers were fine-tuned, resulting in the creation of a new model with 178 million parameters. Using the fine-tuned model, with a maximum word count of 128, a batch size of 16, and 5 epochs, transfer learning is conducted with 10,000 training data and 5,000 testing data. A text sentiment binary classification model for Korean movie review with an accuracy of 0.9582, a loss of 0.1177, and an F1 score of 0.81 has been created. As a result of performing transfer learning with a dataset five times larger, a model with an accuracy of 0.9562, a loss of 0.1202, and an F1 score of 0.86 has been generated.