• Title/Summary/Keyword: training parameters

Search Result 1,021, Processing Time 0.028 seconds

Performance Improvement in Speech Recognition by Weighting HMM Likelihood (은닉 마코프 모델 확률 보정을 이용한 음성 인식 성능 향상)

  • 권태희;고한석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2003
  • In this paper, assuming that the score of speech utterance is the product of HMM log likelihood and HMM weight, we propose a new method that HMM weights are adapted iteratively like the general MCE training. The proposed method adjusts HMM weights for better performance using delta coefficient defined in terms of misclassification measure. Therefore, the parameter estimation and the Viterbi algorithms of conventional 1:.um can be easily applied to the proposed model by constraining the sum of HMM weights to the number of HMMs in an HMM set. Comparing with the general segmental MCE training approach, computing time decreases by reducing the number of parameters to estimate and avoiding gradient calculation through the optimal state sequence. To evaluate the performance of HMM-based speech recognizer by weighting HMM likelihood, we perform Korean isolated digit recognition experiments. The experimental results show better performance than the MCE algorithm with state weighting.

The Korean Practice Parameter for the Treatment of Pervasive Developmental Disorders : Non-Pharmacological Treatment (전반적 발달장애의 한국형 치료 권고안 : 비약물적 치료)

  • Koo, Young-Jin;Cho, In-Hee;Yoo, Hee-Jeong;Yoo, Han-Ik K.;Son, Jung-Woo;Chung, Un-Sun;Ahn, Dong-Hyun;Ahn, Joung-Sook
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.18 no.2
    • /
    • pp.117-122
    • /
    • 2007
  • Practice parameters for non-pharmacological treatment of children and adolescents with pervasive developmental disorders are based on the scientific literature for evidence-based practices. Appropriate educational and behavioral interventions are important in improving the long-term outcome in pervasive developmental disorders. Early and sustained intervention appears to be particularly important. The goal for interventions is to gain pragmatic skills for verbal communication, playing with peers, daily living routines, self-management, and social adaptation. Appropriate involvement and collaboration with parents and family are essential for well-functioning intervention programs. The life-long nature of autism implies that the clinician should maintain an active role in long-term treatment planning and family support. Vocational training and training for more independent living are important for adolescents with autism. Professionals should be knowledgeable about local and national resources and opportunities for family support as well as support of the individual.

  • PDF

An On-line Construction of Generalized RBF Networks for System Modeling (시스템 모델링을 위한 일반화된 RBF 신경회로망의 온라인 구성)

  • Kwon, Oh-Shin;Kim, Hyong-Suk;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.1
    • /
    • pp.32-42
    • /
    • 2000
  • This paper presents an on-line learning algorithm for sequential construction of generalized radial basis function networks (GRBFNs) to model nonlinear systems from empirical data. The GRBFN, an extended from of standard radial basis function (RBF) networks with constant weights, is an architecture capable of representing nonlinear systems by smoothly integrating local linear models. The proposed learning algorithm has a two-stage learning scheme that performs both structure learning and parameter learning. The structure learning stage constructs the GRBFN model using two construction criteria, based on both training error criterion and Mahalanobis distance criterion, to assign new hidden units and the linear local models for given empirical training data. In the parameter learning stage the network parameters are updated using the gradient descent rule. To evaluate the modeling performance of the proposed algorithm, simulations and their results applied to two well-known benchmarks are discussed.

  • PDF

Indirect Adaptive Control of Nonlinear Systems Using a EKF Learning Algorithm Based Wavelet Neural Network (확장 칼만 필터 학습 방법 기반 웨이블릿 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어)

  • Kim Kyoung-Joo;Choi Yoon Ho;Park Jin Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.720-729
    • /
    • 2005
  • In this paper, we design the indirect adaptive controller using Wavelet Neural Network(WNN) for unknown nonlinear systems. The proposed indirect adaptive controller using WNN consists of identification model and controller. Here, the WNN is used in both Identification model and controller The WNN has advantage of indicating the location in both time and frequency simultaneously, and has faster convergence than MLPN and RBFN. There are several training methods for WNN, such as GD, GA, DNA, etc. In this paper, we present the Extended Kalman Filter(EKF) based training method. Although it is computationally complex, this algorithm updates parameters consistent with previous data and usually converges in a few iterations. Finally, ore illustrate the effectiveness of our method through computer simulations for the Buffing system and the one-link rigid robot manipulator. From the simulation results, we show that the indirect adaptive controller using the EKF method has better performance than the GD method.

Image Classification using Deep Learning Algorithm and 2D Lidar Sensor (딥러닝 알고리즘과 2D Lidar 센서를 이용한 이미지 분류)

  • Lee, Junho;Chang, Hyuk-Jun
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1302-1308
    • /
    • 2019
  • This paper presents an approach for classifying image made by acquired position data from a 2D Lidar sensor with a convolutional neural network (CNN). Lidar sensor has been widely used for unmanned devices owing to advantages in term of data accuracy, robustness against geometry distortion and light variations. A CNN algorithm consists of one or more convolutional and pooling layers and has shown a satisfactory performance for image classification. In this paper, different types of CNN architectures based on training methods, Gradient Descent(GD) and Levenberg-arquardt(LM), are implemented. The LM method has two types based on the frequency of approximating Hessian matrix, one of the factors to update training parameters. Simulation results of the LM algorithms show better classification performance of the image data than that of the GD algorithm. In addition, the LM algorithm with more frequent Hessian matrix approximation shows a smaller error than the other type of LM algorithm.

A Case Study of Prediction and Analysis of Unplanned Dilution in an Underground Stoping Mine using Artificial Neural Network (인공신경망을 이용한 지하채광 확정선외 혼입 예측과 분석 사례연구)

  • Jang, Hyongdoo;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.282-288
    • /
    • 2014
  • Stoping method has been acknowledged as one of the typical metalliferous underground mining methods. Notwithstanding with the popularity of the method, the majority of stoping mines are suffering from excessive unplanned dilution which often becomes as the main cause of mine closure. Thus a reliable unplanned dilution management system is imperatively needed. In this study, reliable unplanned dilution prediction system is introduced by adopting artificial neural network (ANN) based on data investigated from one underground stoping mine in Western Australia. In addition, contributions of input parameters were analysed by connection weight algorithm (CWA). To validate the reliability of the proposed ANN, correlation coefficient (R) was calculated in the training and test stage which shown relatively high correlation of 0.9641 in training and 0.7933 in test stage. As results of CWA application, BHL (Length of blast hole) and SFJ (Safety factor of Joint orientation) show comparatively high contribution of 18.78% and 19.77% which imply that these are somewhat critical influential parameter of unplanned dilution.

Influence of Bridge Exercise Combined with Whole Body Vibration on Muscle Activity and Balance of Stroke Patient (전신 진동을 결합한 교각운동이 뇌졸중 환자의 근활성도와 균형에 미치는 영향)

  • Yang, Daejung;Park, Seungkyu;Kang, Jungil;Kim, Jeho;Jung, Daekeun;Oh, Suwhan;Uhm, Yohan
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.4
    • /
    • pp.291-300
    • /
    • 2019
  • Purpose : This study focuses on the influence of bridge exercise combined with whole body vibration on muscle activity and balance. Methods : 30 stroke patients were recruited for subjects. The subjects were divided to bridge exercise combined stable surface (Group I), bridge exercise combined unstable surface (Group II), and bridge exercise combined bridge exercise (Group III), of which 10 subjects were randomly allocated. The subjects were given 30 minutes of neurologic physical therapy which included gait training and muscular strength training, and additionally given 30 minutes of bridge exercise combined stable surface, bridge exercise combined unstable surface, and bridge exercise combined whole body vibration for each group, five times a week, for 8 weeks. Their muscle activity and balance were analyzed before the intervention. After 8 weeks of the intervention, the mentioned parameters were measured once more for between-group analysis. Results : Comparative analysis of the muscle activity and balance between the groups showed statistically significant difference, and post-hoc analysis showed the Group III had greater changes in muscle activity and balance than Group Iand Group II. Conclusion : Such results revealed that bridge exercise combined with whole body vibration is effective in muscle activity and balance. Based on the current study, more effective program is to be proposed for elite athletes as well as stroke patients. Based on the current study, studies that incorporates various frequencies of vibration is required for development of effective whole body vibration exercise program.

Monitoring and Prediction of Appliances Electricity Usage Using Neural Network (신경회로망을 이용한 가전기기 전기 사용량 모니터링 및 예측)

  • Jung, Kyung-Kwon;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.137-146
    • /
    • 2011
  • In order to support increased consumer awareness regarding energy consumption, we present new ways of monitoring and predicting with energy in electric appliances. The proposed system is a design of a common electrical power outlet called smart plug that measures the amount of current passing through current sensor at 0.5 second. To acquire data for training and testing the proposed neural network, weather parameters used include average temperature of day, min and max temperature, humidity, and sunshine hour as input data, and power consumption as target data from smart plug. Using the experimental data for training, the neural network model based on Back-Propagation algorithm was developed. Multi layer perception network was used for nonlinear mapping between the input and the output data. It was observed that the proposed neural network model can predict the power consumption quite well with correlation coefficient was 0.9965, and prediction mean square error was 0.02033.

Control of Weld Pool Size in GMA Welding Process Using Neural Networks (신경회로를 이용한 GMA 용접 공정에서의 용융지의 크기 제어)

  • 임태균;조형석;부광석
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.59-72
    • /
    • 1994
  • This paper presents an on-line quality monitoring and control method to obtain a uniform weld quality in gas metal arc welding (GMAW) processes. The geometrical parameters of the weld pool such as the top bead width and the penetration depth plus half back width are utilized to assess the integrity of the weld quality. Since a good quality weld is characterized by a relatively high depth-to-width ratio in its dimensions, the second geometrical parameter is regulated to a desired one. The monitoring variables are the surface temperatures measured at various points on the top surface of the weldment which are strongly related to the formation of the weld pool The relationship between the measured temperatures and the weld pool size is implemented on the multilayer perceptrons which are powerful for realization of complex mapping characteristics through training by samples. For on-line quality monitoring and control, it is prerequisite to estimate the weld pool sizes in the region of transient states. For this purpose, the time history of the surface temperatures is used as the input to the neural estimator. The control purpose is to obtain a uniform weld quality. In this research, the weld pool size is directly regulated to a desired one. The proposed controller is composed of a neural pool size estimator, a neural feedforward controller and a conventional feedback controller. The pool size estimator predicts the weld pool size under growing. The feedforward controller compensates for the nonlinear characteristics of the welding process. A series of simulation studies shows that the proposed control method improves the overall system response in the presence of changes in torch travel speed during GMA welding and guarantees the uniform weld quality.

  • PDF

Optimization of Data Recovery using Non-Linear Equalizer in Cellular Mobile Channel (셀룰라 이동통신 채널에서 비선형 등화기를 이용한 최적의 데이터 복원)

  • Choi, Sang-Ho;Ho, Kwang-Chun;Kim, Yung-Kwon
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.1-7
    • /
    • 2001
  • In this paper, we have investigated the CDMA(Code Division Multiple Access) Cellular System with non-linear equalizer in reverse link channel. In general, due to unknown characteristics of channel in the wireless communication, the distribution of the observables cannot be specified by a finite set of parameters; instead, we partitioned the m-dimensional sample space Into a finite number of disjointed regions by using quantiles and a vector quantizer based on training samples. The algorithm proposed is based on a piecewise approximation to regression function based on quantiles and conditional partition moments which are estimated by Robbins Monro Stochastic Approximation (RMSA) algorithm. The resulting equalizers and detectors are robust in the sense that they are insensitive to variations in noise distributions. The main idea is that the robust equalizers and robust partition detectors yield better performance in equiprobably partitioned subspace of observations than the conventional equalizer in unpartitioned observation space under any condition. And also, we apply this idea to the CDMA system and analyze the BER performance.

  • PDF