In this paper, assuming that the score of speech utterance is the product of HMM log likelihood and HMM weight, we propose a new method that HMM weights are adapted iteratively like the general MCE training. The proposed method adjusts HMM weights for better performance using delta coefficient defined in terms of misclassification measure. Therefore, the parameter estimation and the Viterbi algorithms of conventional 1:.um can be easily applied to the proposed model by constraining the sum of HMM weights to the number of HMMs in an HMM set. Comparing with the general segmental MCE training approach, computing time decreases by reducing the number of parameters to estimate and avoiding gradient calculation through the optimal state sequence. To evaluate the performance of HMM-based speech recognizer by weighting HMM likelihood, we perform Korean isolated digit recognition experiments. The experimental results show better performance than the MCE algorithm with state weighting.
Journal of the Korean Academy of Child and Adolescent Psychiatry
/
v.18
no.2
/
pp.117-122
/
2007
Practice parameters for non-pharmacological treatment of children and adolescents with pervasive developmental disorders are based on the scientific literature for evidence-based practices. Appropriate educational and behavioral interventions are important in improving the long-term outcome in pervasive developmental disorders. Early and sustained intervention appears to be particularly important. The goal for interventions is to gain pragmatic skills for verbal communication, playing with peers, daily living routines, self-management, and social adaptation. Appropriate involvement and collaboration with parents and family are essential for well-functioning intervention programs. The life-long nature of autism implies that the clinician should maintain an active role in long-term treatment planning and family support. Vocational training and training for more independent living are important for adolescents with autism. Professionals should be knowledgeable about local and national resources and opportunities for family support as well as support of the individual.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.37
no.1
/
pp.32-42
/
2000
This paper presents an on-line learning algorithm for sequential construction of generalized radial basis function networks (GRBFNs) to model nonlinear systems from empirical data. The GRBFN, an extended from of standard radial basis function (RBF) networks with constant weights, is an architecture capable of representing nonlinear systems by smoothly integrating local linear models. The proposed learning algorithm has a two-stage learning scheme that performs both structure learning and parameter learning. The structure learning stage constructs the GRBFN model using two construction criteria, based on both training error criterion and Mahalanobis distance criterion, to assign new hidden units and the linear local models for given empirical training data. In the parameter learning stage the network parameters are updated using the gradient descent rule. To evaluate the modeling performance of the proposed algorithm, simulations and their results applied to two well-known benchmarks are discussed.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.6
/
pp.720-729
/
2005
In this paper, we design the indirect adaptive controller using Wavelet Neural Network(WNN) for unknown nonlinear systems. The proposed indirect adaptive controller using WNN consists of identification model and controller. Here, the WNN is used in both Identification model and controller The WNN has advantage of indicating the location in both time and frequency simultaneously, and has faster convergence than MLPN and RBFN. There are several training methods for WNN, such as GD, GA, DNA, etc. In this paper, we present the Extended Kalman Filter(EKF) based training method. Although it is computationally complex, this algorithm updates parameters consistent with previous data and usually converges in a few iterations. Finally, ore illustrate the effectiveness of our method through computer simulations for the Buffing system and the one-link rigid robot manipulator. From the simulation results, we show that the indirect adaptive controller using the EKF method has better performance than the GD method.
This paper presents an approach for classifying image made by acquired position data from a 2D Lidar sensor with a convolutional neural network (CNN). Lidar sensor has been widely used for unmanned devices owing to advantages in term of data accuracy, robustness against geometry distortion and light variations. A CNN algorithm consists of one or more convolutional and pooling layers and has shown a satisfactory performance for image classification. In this paper, different types of CNN architectures based on training methods, Gradient Descent(GD) and Levenberg-arquardt(LM), are implemented. The LM method has two types based on the frequency of approximating Hessian matrix, one of the factors to update training parameters. Simulation results of the LM algorithms show better classification performance of the image data than that of the GD algorithm. In addition, the LM algorithm with more frequent Hessian matrix approximation shows a smaller error than the other type of LM algorithm.
Stoping method has been acknowledged as one of the typical metalliferous underground mining methods. Notwithstanding with the popularity of the method, the majority of stoping mines are suffering from excessive unplanned dilution which often becomes as the main cause of mine closure. Thus a reliable unplanned dilution management system is imperatively needed. In this study, reliable unplanned dilution prediction system is introduced by adopting artificial neural network (ANN) based on data investigated from one underground stoping mine in Western Australia. In addition, contributions of input parameters were analysed by connection weight algorithm (CWA). To validate the reliability of the proposed ANN, correlation coefficient (R) was calculated in the training and test stage which shown relatively high correlation of 0.9641 in training and 0.7933 in test stage. As results of CWA application, BHL (Length of blast hole) and SFJ (Safety factor of Joint orientation) show comparatively high contribution of 18.78% and 19.77% which imply that these are somewhat critical influential parameter of unplanned dilution.
Journal of The Korean Society of Integrative Medicine
/
v.7
no.4
/
pp.291-300
/
2019
Purpose : This study focuses on the influence of bridge exercise combined with whole body vibration on muscle activity and balance. Methods : 30 stroke patients were recruited for subjects. The subjects were divided to bridge exercise combined stable surface (Group I), bridge exercise combined unstable surface (Group II), and bridge exercise combined bridge exercise (Group III), of which 10 subjects were randomly allocated. The subjects were given 30 minutes of neurologic physical therapy which included gait training and muscular strength training, and additionally given 30 minutes of bridge exercise combined stable surface, bridge exercise combined unstable surface, and bridge exercise combined whole body vibration for each group, five times a week, for 8 weeks. Their muscle activity and balance were analyzed before the intervention. After 8 weeks of the intervention, the mentioned parameters were measured once more for between-group analysis. Results : Comparative analysis of the muscle activity and balance between the groups showed statistically significant difference, and post-hoc analysis showed the Group III had greater changes in muscle activity and balance than Group Iand Group II. Conclusion : Such results revealed that bridge exercise combined with whole body vibration is effective in muscle activity and balance. Based on the current study, more effective program is to be proposed for elite athletes as well as stroke patients. Based on the current study, studies that incorporates various frequencies of vibration is required for development of effective whole body vibration exercise program.
Journal of the Korea Society of Computer and Information
/
v.16
no.8
/
pp.137-146
/
2011
In order to support increased consumer awareness regarding energy consumption, we present new ways of monitoring and predicting with energy in electric appliances. The proposed system is a design of a common electrical power outlet called smart plug that measures the amount of current passing through current sensor at 0.5 second. To acquire data for training and testing the proposed neural network, weather parameters used include average temperature of day, min and max temperature, humidity, and sunshine hour as input data, and power consumption as target data from smart plug. Using the experimental data for training, the neural network model based on Back-Propagation algorithm was developed. Multi layer perception network was used for nonlinear mapping between the input and the output data. It was observed that the proposed neural network model can predict the power consumption quite well with correlation coefficient was 0.9965, and prediction mean square error was 0.02033.
This paper presents an on-line quality monitoring and control method to obtain a uniform weld quality in gas metal arc welding (GMAW) processes. The geometrical parameters of the weld pool such as the top bead width and the penetration depth plus half back width are utilized to assess the integrity of the weld quality. Since a good quality weld is characterized by a relatively high depth-to-width ratio in its dimensions, the second geometrical parameter is regulated to a desired one. The monitoring variables are the surface temperatures measured at various points on the top surface of the weldment which are strongly related to the formation of the weld pool The relationship between the measured temperatures and the weld pool size is implemented on the multilayer perceptrons which are powerful for realization of complex mapping characteristics through training by samples. For on-line quality monitoring and control, it is prerequisite to estimate the weld pool sizes in the region of transient states. For this purpose, the time history of the surface temperatures is used as the input to the neural estimator. The control purpose is to obtain a uniform weld quality. In this research, the weld pool size is directly regulated to a desired one. The proposed controller is composed of a neural pool size estimator, a neural feedforward controller and a conventional feedback controller. The pool size estimator predicts the weld pool size under growing. The feedforward controller compensates for the nonlinear characteristics of the welding process. A series of simulation studies shows that the proposed control method improves the overall system response in the presence of changes in torch travel speed during GMA welding and guarantees the uniform weld quality.
In this paper, we have investigated the CDMA(Code Division Multiple Access) Cellular System with non-linear equalizer in reverse link channel. In general, due to unknown characteristics of channel in the wireless communication, the distribution of the observables cannot be specified by a finite set of parameters; instead, we partitioned the m-dimensional sample space Into a finite number of disjointed regions by using quantiles and a vector quantizer based on training samples. The algorithm proposed is based on a piecewise approximation to regression function based on quantiles and conditional partition moments which are estimated by Robbins Monro Stochastic Approximation (RMSA) algorithm. The resulting equalizers and detectors are robust in the sense that they are insensitive to variations in noise distributions. The main idea is that the robust equalizers and robust partition detectors yield better performance in equiprobably partitioned subspace of observations than the conventional equalizer in unpartitioned observation space under any condition. And also, we apply this idea to the CDMA system and analyze the BER performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.