• Title/Summary/Keyword: training parameters

Search Result 1,021, Processing Time 0.026 seconds

Real-Time Control of Variable Load DC Servo Motor Using PID-Learning Controller (PID 학습제어기를 이용한 가변부하 직류서보전동기의 실시간 제어)

  • Chung, In-Suk;Hong, Sung-Woo;Kim, Lark-Kyo;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.782-784
    • /
    • 1999
  • This paper deals with speed control of DC-servo motor using a Back-Propagation(BP) Learning Algorism and a PID controller Conventionally in the industrial control, PID controller has been used. But the PID controller produced suitable parameter of each system and also variable of PID controller should be changed enviroment, disturbance, load. So this paper revealed for experimental, a neural network and a PID controller combined system using developed speed characters of a Variable Load DC-servo motor. The parameters of the plant are determined by neural network perform on on-line system after training the neural network on off-line system.

  • PDF

The solution of single-variable minimization using neural network

  • Son, Jun-Hyug;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2528-2530
    • /
    • 2004
  • Neural network minimization problems are often conditioned and in this contribution way to handle this will be discussed. It is shown that a better conditioned minimization problem can be obtained if the problem is separated with respect to the linear parameters. This will increase the convergence speed of the minimization. One of the most powerful uses of neural networks is in function approximation(curve fitting)[1]. A main characteristic of this solution is that function (f) to be approximated is given not explicitly but implicitly through a set of input-output pairs, named as training set, that can be easily obtained from calibration data of the measurement system. In this context, the usage of Neural Network(NN) techniques for modeling the systems behavior can provide lower interpolation errors when compared with classical methods like polynomial interpolation. This paper solve of single-variable minimization using neural network.

  • PDF

WEIGHTED POSSIBILISTIC VARIANCE AND MOMENTS OF FUZZY NUMBERS

  • Pasha, E.;Asady, B.;Saeidifar, A.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1169-1183
    • /
    • 2008
  • In this paper, a method to find the weighted possibilistic variance and moments about the mean value of fuzzy numbers via applying a difuzzification using minimizer of the weighted distance between two fuzzy numbers is introduced. In this way, we obtain the nearest weighted point with respect to a fuzzy number, this main result is a new and interesting alternative justification to define of weighted mean of a fuzzy number. Considering this point and the weighted distance quantity, we introduce the weighted possibilistic mean (WPM) value and the weighted possibilistic variance(WPV) of fuzzy numbers. This paper shows that WPM is the nearest weighted point to fuzzy number and the WPV of fuzzy number is preserved more properties of variance in probability theory so that it can simply introduce the possibilistic moments about the mean of fuzzy numbers without problem. The moments of fuzzy numbers play an important role to estimate of parameters, skewness, kurtosis in many of fuzzy times series models.

  • PDF

Prediction of Surface Roughness and Electric Current Consumption in Turning Operation using Neural Network with Back Propagation and Particle Swarm Optimization (BP와 PSO형 신경회로망을 이용한 선삭작업에서의 표면조도와 전류소모의 예측)

  • Punuhsingon, Charles S.C;Oh, Soo-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.65-73
    • /
    • 2015
  • This paper presents a method of predicting the machining parameters on the turning process of low carbon steel using a neural network with back propagation (BP) and particle swarm optimization (PSO). Cutting speed, feed rate, and depth of cut are used as input variables, while surface roughness and electric current consumption are used as output variables. The data from experiments are used to train the neural network that uses BP and PSO to update the weights in the neural network. After training, the neural network model is run using test data, and the results using BP and PSO are compared with each other.

A Study on the Diagnosis of Cutting Tool States Using Cutting Conditions and Cutting Force Parameters(II) -Decision Making- (절삭조건과 절삭력 파라메타를 이용한 공구상태 진단에 관한 연구(II) -의사결정 -)

  • 정진용;서남섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.105-110
    • /
    • 1998
  • In this study, statistical and neural network methods were used to recognize the cutting tool states. This system employed the tool dynamometer and cutting force signals which are processed from the tool dynamometer sensor using linear discriminent function. To learn the necessary input/output mapping for turning operation diagnosis, the weights and thresholds of the neural network were adjusted according to the error back propagation method during off-line training. The cutting conditions, cutting force ratios and statistical values(standard deviation, coefficient of variation) attained from the cutting force signals were used as the inputs to the neural network. Through the suggested neural network a cutting tool states may be successfully diagnosed.

  • PDF

Optimal Inner Case Design for Refrigerator by Utilizing Artificial Neural Networks and Genetic Algorithm

  • Zhai, Jianguang;Cho, Jong-Rae;Roh, Min-Shik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.971-980
    • /
    • 2010
  • In this paper, an artificial neural network (ANN) was employed to build a predicting model for refrigerator structure. The predicting model includes three input variables of the plaque depth (D), width (W) and interval distance(S) on the inner wall. Finite element method was utilized to obtain the data, which would be necessary for the ANN training process. Finally, a genetic algorithm (GA) was applied to find the optimal parameters that leaded to the minimum inner case deformation under operating condition. The optimal combination found is the depth(D) of 2.63mm, the width(W) of 19.24mm and the interval distance(S) of 49.38mm which leaded to the smallest deformation of 1.88mm for the given refrigerator model.

Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Suhatril, Meldi;Shariati, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.853-868
    • /
    • 2013
  • The comparison of the effectiveness of artificial neural network (ANN) and linear regression (LR) in the prediction of strain in tie section using experimental data from eight high-strength-self-compact-concrete (HSSCC) deep beams are presented here. Prior to the aforementioned, a suitable ANN architecture was identified. The format of the network architecture was ten input parameters, two hidden layers, and one output. The feed forward back propagation neural network of eleven and ten neurons in first and second TRAINLM training function was highly accurate and generated more precise tie strain diagrams compared to classical LR. The ANN's MSE values are 90 times smaller than the LR's. The correlation coefficient value from ANN is 0.9995 which is indicative of a high level of confidence.

Application of Information Technology in Tunnel Design - A case study (정보기술(IT)의 터널 설계 분야에의 적용사례)

  • Yoo Chung Sik;Kim Joo-Mi;Kim Jin Ha
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.105-116
    • /
    • 2005
  • This study investigated the applicability of the Artificial Neural Network(ANN) technique for prediction of tunnel behavior. For training data collection, a series of finite element analyses were conducted for actual tunnel project site. Using the data, optimimzed ANNs were developed through a sensitivity study on internal parameters. The developed ANNs can make tunneling related predictions such as tunnel crown settlement, shotcrete lining stress, ground surface settlement, and groundwater inflow rate. The results indicated that the developed ANNs can be used as an effective and efficient tool for tunnelling related prediction in practical tunneling situations.

  • PDF

Modified SNR-Normalization Technique for Robust Speech Recognition

  • Jung, Hoi-In;Shim, Kab-Jong;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3E
    • /
    • pp.14-18
    • /
    • 1997
  • One fo the major problems in speech recognition is the mismatch between training and testing environments. Recently, SNR normalization technique, which normalizes the dynamic range of frequency channels in mel-scaled filterbank, was proposed[1]. While it showed improved robustness against additive noise, it requires a reliable speech detection mechanism and several adaptation parameters to be optimized. In this paper, we propose a modified SNR normalization technique. In this technique, we take simply the maximum of filterbank output and predetermined masking constant for each frequency band. According to the speaker-independent isolated word recognition in car noise environments, proposed modification yields better recognition performance that the original SNR normalization method, with rather reduced complexity.

  • PDF

Quantitative Structure Activity Relationship Prediction of Oral Bioavailabilities Using Support Vector Machine

  • Fatemi, Mohammad Hossein;Fadaei, Fatemeh
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.543-552
    • /
    • 2014
  • A quantitative structure activity relationship (QSAR) study is performed for modeling and prediction of oral bioavailabilities of 216 diverse set of drugs. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regression (MLR), artificial neural network (ANN), support vector machine (SVM) and random forest (RF) techniques. Comparison between statistical parameters of these models indicates the suitability of SVM over other models. The root mean square errors of SVM model were 5.933 and 4.934 for training and test sets, respectively. Robustness and reliability of the developed SVM model was evaluated by performing of leave many out cross validation test, which produces the statistic of $Q^2_{SVM}=0.603$ and SPRESS = 7.902. Moreover, the chemical applicability domains of model were determined via leverage approach. The results of this study revealed the applicability of QSAR approach by using SVM in prediction of oral bioavailability of drugs.