• Title/Summary/Keyword: training parameters

Search Result 1,021, Processing Time 0.026 seconds

A New Model for Forecasting Inundation Damage within Watersheds - An Artificial Neural Network Approach (인공신경망을 이용한 유역 내 침수피해 예측모형의 개발)

  • Chung, Kyung-Jin;Chen, Huaiqun;Kim, Albert S.
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.9-16
    • /
    • 2005
  • This paper presents the use of an Artificial Neural Network (ANN) as a viable means of forecasting Inundation Damage Area (IDA) in many watersheds. In order to develop the forecasting model with various environmental factors, we selected 108 watershed areas in South Korea and collected 49 damage data sets from 1990 to 2000, of which each set is composed of 27 parameters including the IDA, rainfall amount, and land use. After successful training processes of the ANN, a good agreement (R=0.92) is obtained (under present conditions) between the measured values of the IDA and those predicted by the developed ANN using the remaining 26 data sets as input parameters. The results indicate that the inundation damage is affected by not only meteorological information such as the rainfall amount, but also various environmental characteristics of the watersheds. So, the ANN proves its present ability to predict the IDA caused by an event of complex factors in a specific watershed area using accumulated temporal-spatial information, and it also shows a potential capability to handle complex non-linear dynamic phenomena of environmental changes. In this light, the ANN can be further harnessed to estimate the importance of certain input parameters to an output (e.g., the IDA in this study), quantify the significance of parameters involved in pre-existing models, and contribute to the presumption, selection, and calibration of input parameters of conventional models.

Receiver Operating Characteristic Analysis for Prediction of Postpartum Metabolic Diseases in Dairy Cows in an Organic Farm in Korea

  • Kim, Dohee;Choi, Woojae;Ro, Younghye;Hong, Leegon;Kim, Seongdae;Yoon, Ilsu;Choe, Eunhui;Kim, Danil
    • Journal of Veterinary Clinics
    • /
    • v.39 no.5
    • /
    • pp.199-206
    • /
    • 2022
  • Postpartum diseases should be predicted to prevent productivity loss before calving especially in organic dairy farms. This study was aimed to investigate the incidence of postpartum metabolic diseases in an organic dairy farm in Korea, to confirm the association between diseases and prepartum blood biochemical parameters, and to evaluate the accuracy of these parameters with a receiver operating characteristic (ROC) analysis for identifying vulnerable cows. Data were collected from 58 Holstein cows (16 primiparous and 42 multiparous) having calved for 2 years on an organic farm. During a transition period from 4 weeks prepartum to 4 weeks postpartum, blood biochemistry was performed through blood collection every 2 weeks with a physical examination. Thirty-one (53.4%) cows (9 primiparous and 22 multiparous) were diagnosed with at least one postpartum disease. Each incidence was 27.6% for subclinical ketosis, 22.4% for subclinical hypocalcemia, 12.1% for retained placenta, 10.3% for displaced abomasum and 5.2% for clinical ketosis. Between at least one disease and no disease, there were significant differences in the prepartum levels of parameters like body condition score (BCS), non-esterified fatty acid (NEFA), total bilirubin (T-bil), direct bilirubin (D-bil) and NEFA to total cholesterol (T-chol) ratio (p < 0.05). The ROC analysis of each of these prepartum parameters had the area under the curve (AUC) <0.7. However, the ROC analysis with logistic regression including all these parameters revealed a higher AUC (0.769), sensitivity (71.0%), and specificity (77.8%). The ROC analysis with logistic regression including the prepartum BCS, NEFA, T-bil, D-bil, and NEFA to T-chol ratio can be used to identify cows that are vulnerable to postpartum diseases with moderate accuracy.

Effect of rTMS on Motor Sequence Learning and Brain Activation : A Preliminary Study (반복적 경두부 자기자극이 운동학습과 뇌 운동영역 활성화에 미치는 영향 : 예비연구)

  • Park, Ji-Won;Kim, Jong-Man;Kim, Yun-Hee
    • Physical Therapy Korea
    • /
    • v.10 no.3
    • /
    • pp.17-27
    • /
    • 2003
  • Repetitive transcranial magnetic stimulation (rTMS) modulates cortical excitability beyond the duration of the rTMS trains themselves. Depending on rTMS parameters, a lasting inhibition or facilitation of cortical excitability can be induced. Therefore, rTMS of high or low frequency over motor cortex may change certain aspects of motor learning performance and cortical activation. This study investigated the effect of high and low frequency subthreshold rTMS applied to the motor cortex on motor learning of sequential finger movements and brain activation using functional MRI (fMRI). Three healthy right-handed subjects (mean age 23.3) were enrolled. All subjects were trained with sequences of seven-digit rapid sequential finger movements, 30 minutes per day for 5 consecutive days using their left hand. 10 Hz (high frequency) and 1 Hz (low frequency) trains of rTMS with 80% of resting motor threshold and sham stimulation were applied for each subject during the period of motor learning. rTMS was delivered on the scalp over the right primary motor cortex using a figure-eight shaped coil and a Rapid(R) stimulator with two Booster Modules (Magstim Co. Ltd, UK). Functional MRI (fMRI) was performed on a 3T ISOL Forte scanner before and after training in all subjects (35 slices per one brain volume TR/TE = 3000/30 ms, Flip angle $60^{\circ}$, FOV 220 mm, $64{\times}64$ matrix, slice thickness 4 mm). Response time (RT) and target scores (TS) of sequential finger movements were monitored during the training period and fMRl scanning. All subjects showed decreased RT and increased TS which reflecting learning effects over the training session. The subject who received high frequency rTMS showed better performance in TS and RT than those of the subjects with low frequency or sham stimulation of rTMS. In fMRI, the subject who received high frequency rTMS showed increased activation of primary motor cortex, premotor, and medial cerebellar areas after the motor sequence learning after the training, but the subject with low frequency rTMS showed decreased activation in above areas. High frequency subthreshold rTMS on the motor cortex may facilitate the excitability of motor cortex and improve the performance of motor sequence learning in normal subject.

  • PDF

A Self Organization of Wavelet Network Structure by Generation and Extinction of Hidden Nodes (은닉노드의 생성 ${\cdot}$ 소멸에 의한 웨이블릿 신경망 구조의 자기 조직화)

  • Lim, Sung-Kil;Lee, Hyon-Soo
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.12
    • /
    • pp.78-89
    • /
    • 1999
  • Previous wavelet network structures are determined by considering the relationship between wavelet windows distribution of training patterns that are transformed into time-frequency space. Because it is separated two algorithms that determines wavelet network structure and that modifies parameters of network, learning process that minimizes output error of network is executed after the network structure is determined. But this method has some weakness that training patterns must be transformed into time-frequency space by additional preprocessing and the network structure should be fixed during learning process. In this paper, we propose a new constructing method for wavelet network structure by using differences between the output and the desired response without preprocessing. Because the algorithm perform network construction and error minimizing process simultaneously, it can determine the number of hidden nodes adaptively as with the complexity of problems. In addition, the network structure is optimized by inserting new hidden nodes in the area that has maximum error and extracting hidden nodes that has no effect to the output of network. This algorithm has no constraint condition that all training patterns must be known, because it removes preprocessing procedure for training patterns and it can be applied effectively to systems that has time varying outputs.

  • PDF

The Analysis of Liquefaction Evaluation in Ground Using Artificial Neural Network (인공신경망을 이용한 지반의 액상화 가능성 판별)

  • Lee, Song;Park, Hyung-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.37-42
    • /
    • 2002
  • Artificial neural networks are efficient computing techniques that are widely used to solve complex problems in many fields. In this paper a liquefaction potential was estimated by using a back propagation neural network model applicated to cyclic triaxial test data, soil parameters and site investigation data. Training and testing of the network were based on a database of 43 cyclic triaxial test data from 00 sites. The neural networks are trained by modifying the weights of the neurons in response to the errors between the actual output values and the target output value. Training was done iteratively until the average sum squared errors over all the training patterns were minimized. This generally occurred after about 15,000 cycles of training. The accuracy from 72% to 98% was shown for the model equipped with two hidden layers and ten input variables. Important effective input variables have been identified as the NOC,$D_10$ and (N$_1$)$_60$. The study showed that the neural network model predicted a CSR(Cyclic shear stress Ratio) of silty-sand reasonably well. Analyzed results indicate that the neural-network model is more reliable than simplified method using N value of SPT.

Design of a Model-Based Fuzzy Controller for Container Cranes (컨테이너 크레인을 위한 모델기반 퍼지제어기 설계)

  • Lee, Soo-Lyong;Lee, Yun-Hyung;Ahn, Jong-Kap;Son, Jeong-Ki;Choi, Jae-Jun;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.459-464
    • /
    • 2008
  • In this paper, we present the model-based fuzzy controller for container cranes which effectively performs set-point tracking control of trolley and anti-swaying control under system parameter and disturbance changes. The first part of this paper focuses on the development of Takagi-Sugeno (T-S) fuzzy modeling in a nonlinear container crane system. Parameters of the membership functions are adjusted by a RCGA to have same dynamic characteristics with nonlinear model of a container crane. In the second part, we present a design methodology of the model-based fuzzy controller. Sub-controllers are designed using LQ control theory for each subsystem in fuzzy model and then the proposed controller is performed with the combination of these sub-controllers by fuzzy IF-THEN rules. In the results of simulation, the fuzzy model showed almost similar dynamic characteristics compared to the outputs of the nonlinear container crane model. Also, the model-based fuzzy controller showed not only the fast settling time for the change in parameter and disturbance, but also stable and robust control performances without any steady-state error.

Hybrid All-Reduce Strategy with Layer Overlapping for Reducing Communication Overhead in Distributed Deep Learning (분산 딥러닝에서 통신 오버헤드를 줄이기 위해 레이어를 오버래핑하는 하이브리드 올-리듀스 기법)

  • Kim, Daehyun;Yeo, Sangho;Oh, Sangyoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.7
    • /
    • pp.191-198
    • /
    • 2021
  • Since the size of training dataset become large and the model is getting deeper to achieve high accuracy in deep learning, the deep neural network training requires a lot of computation and it takes too much time with a single node. Therefore, distributed deep learning is proposed to reduce the training time by distributing computation across multiple nodes. In this study, we propose hybrid allreduce strategy that considers the characteristics of each layer and communication and computational overlapping technique for synchronization of distributed deep learning. Since the convolution layer has fewer parameters than the fully-connected layer as well as it is located at the upper, only short overlapping time is allowed. Thus, butterfly allreduce is used to synchronize the convolution layer. On the other hand, fully-connecter layer is synchronized using ring all-reduce. The empirical experiment results on PyTorch with our proposed scheme shows that the proposed method reduced the training time by up to 33% compared to the baseline PyTorch.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.

Fuzzy-ARTMAP based Multi-User Detection

  • Lee, Jung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3A
    • /
    • pp.172-178
    • /
    • 2012
  • This paper studies the application of a fuzzy-ARTMAP (FAM) neural network to multi-user detector (MUD) for direct sequence (DS)-code division multiple access (CDMA) system. This method shows new solution for solving the problems, such as complexity and long training, which is found when implementing the previously developed neural-basis MUDs. The proposed FAM based MUD is fast and easy to train and includes capabilities not found in other neural network approaches; a small number of parameters, no requirements for the choice of initial weights, automatic increase of hidden units, no risk of getting trapped in local minima, and the capabilities of adding new data without retraining previously trained data. In simulation studies, binary signals were generated at random in a linear channel with Gaussian noise. The performance of FAM based MUD is compared with other neural net based MUDs in terms of the bit error rate.

A study on nonlinear data-based modeling using fuzzy neural networks (퍼지신경망을 이용한 비선형 데이터 모델링에 관한 연구)

  • Kwon, Oh-Gook;Jang, Wook;Joo, Young-Hoon;Choi, Yoon-Ho;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.120-123
    • /
    • 1997
  • This paper presents models of fuzzy inference systems that can be built from a set of input-output training data pairs through hybrid structure-parameter learning. Fuzzy inference systems has the difficulty of parameter learning. Here we develop a coding format to determine a fuzzy neural network(FNN) model by chromosome in a genetic algorithm(GA) and present systematic approach to identify the parameters and structure of FNN. The proposed FNN can automatically identify the fuzzy rules and tune the membership functions by modifying the connection weights of the networks using the GA and the back-propagation learning algorithm. In order to show effectiveness of it we simulate and compare with conventional methods.

  • PDF